Secrets in Math: How do we Fly?
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This article covers the history of flight from 1400s to the modern era, focusing on
d'Alembert's paradox and explanations of how lift is created. It is unnerving to think that it
wasn't until 2008 that scientists were finally able to answer the question of how planes
remain in the air. D'Alembert's paradox has troubled mathematicians and aeronautic
experts for years. It was a simple statement made in 1749, but the implications have
influenced the field of fluid dynamics for centuries to come. The statement made by
d'Alembert essentially concluded that there is no mathematical explanation for the
physical observation of drag on any solid object moving through a fluid, making airborne
flight an unexplainable enigma. However, in 2008, a paper was published finally providing
a coherent resolution to d'Alembert's paradox as well as fully explaining how lift and drag
are created (Hoffman and Johnson, 2008; 2009). After disproving the previous theories
provided by Prandtl and Kutta-Zhukovsy, Johan Hoffman and Claes Johnson built on the
work of d'Alembert and Stokes and were able to identify the instability mechanism which
their predecessors overlooked. Using this mechanism, they were able to explain the cause
of net drag on the wing. With this understanding, airplane developers can take greater steps
to improving the design of airplane wings and make air travel much more efficient.
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French mathematician who used Euler's equations
to show that the drag on a body moving through

Humans have always been interested in
conquering new frontiers. This was evident
thousands of years before the modern era, in
Ancient Greece; from the myths of gods overhead
to studying the treks of the stars through the
heavens, they were seduced by the concept of
flight. Although humans have been interested in
flying for thousands of years, the field of
aeronautics only began in 1485 with Da Vinci's
design of "The Ornithopter”. However, it took
until 1903 for the first flying machine to be
invented by the Wright Brothers, meaning it took
over 400 years to go from design to creation
(NASA, 2016). That being said, the mathematics
required to achieve these developments has lagged
even further behind the physical advancements in
the real world. This rift between the mathematics
and engineering behind flight started in 1749 with
the formation of d'Alembert's paradox (Claes
Johnson, 2012a). Jean le Rond d'Alembert was a

in an negligibly viscous (inviscid) and
incompressible fluid was zero. This did not align
with any observations made in the physical world
and caused the engineering branch of fluid
mechanics, known now as hydraulics, to separate
into its own field, different from the field of
theoretical fluid mechanics. It was only recently
that the mathematics finally caught up with the
physical observations. This occurred in 2008 when
an explanation and resolution for d'Alembert's
paradox was sufficiently tested and explained by
Johan Hoffman and Claes Johnson (Hoffman and
Johnson, 2008; 2009). This means that for over
250 years, we had no concrete answer to the
fundamental question of: "What keeps planes up?”
This paper informs readers about the history of the
development of the mathematics behind fluid
dynamics as well as to depict how the current
resolution of d'Alembert's Paradox explains the

possibility of flight.



Though humans had been interested in flight for
thousands of years beforehand, the individual who
made the
understanding was Leonardo da Vinci (NASA,
2016). He marvelled at how birds were able to fly
in the sky while he was forcibly earthbound. For

first documented strides towards

many years, he studied birds, focusing on how they
flew and their wing structure. With all his
knowledge, he set out to design one of the most
complicated machines of his time and although his
fabled "Ornithopter" was never constructed, his
detailed blueprints laid down the framework for
the development of fluid dynamics as a field. The
earliest functional flying machines were produced
between the 1800s and the 1850s (NASA, 2016;
Gray, 2016). They were simple fixed-wing gliders
created by George Cayley using the many
prototypes method. The

approach involves the development and testing of

many  prototype

a design, observing what had worked, what had
not, and then improving on the original design for
the next prototype. This was the approach he had
to take because the mathematics prior to this
development suggested that flight was impossible.
This 1749, when French

mathematician Jean le Rond d'Alembert used

was evident in
Euler’s equations for low-viscosity fluids, which
assumed an incompressible and inviscid fluid with
zero friction along the surface, to demonstrate that
the high pressure in the front of the sphere would
be balanced out by an equal high pressure at the
rear of the sphere in Figure 1.

This meant that the air flowing around a sphere
would not create any net drag. He was aware that
was untrue in the physical world, but d'Alembert
would never be able to explain this disconnect
between his math and the world, stating that:

"It seems to me that the theory (potential flow),
developed in all possible rigour, gives, at least in
several cases, a strictly vanishing resistance, a

singular paradox which I leave to future Geometers
to elucidate” (Claes Johnson, 2012a).

This  conundrum  was later  designated
"d'Alembert's paradox", and split the field of fluid
studies into the physical-world observation-based
field of hydraulics, and the theoretical, math-based

x|

field of fluid mechanics. George Cayley's many
prototypes  method

observation including ideal wing shapes, the best

allowed for  physical
angle of attack, and other ways to increase lift.
These observations were used to derive equations
that allowed for calculations, but how exactly the
small changes he made to the design of his
prototype actually kept the plane in the air was still
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Figure 1: The potential flow solution according to
the Navier-Stokes equation, with blue areas
representing areas with low pressure while red
areas represent areas of high pressure. Stokes and
d'Alembert both found that the two areas of high
pressure push against the sphere and cancel each
other out resulting in no net drag, a conclusion
which did not agree with observations made in
the physical world (Claes Johnson, 2012a). (Image
adapted from Incredio, 2009).

not yet understood. However, this method did pay
off for George Cayley because after 50 years of
prototypes he had finally designed a glider that was
capable of flight in 1849 (Gray, 2010).

In 1822, the Navier-Stokes equations were
developed by Claude-Louis Navier and George
Gabriel Stokes. These equations were created to
describe how a velocity vector field affects a fluid,
or in terms of flight: how air flows around the
wing. In 1851, Stokes, using these equations,
modelled the flow of a fluid around the sphere in



Figure 1 (Incredio, 2009). He found that if he
decreased the viscosity of the fluid, the drag on the
sphere would also decrease, which was similar to
what d'Alembert had found. This was more
evidence supporting the idea that low-viscosity air
around a wing would not produce any drag, which
did not reflect reality. At this point, George Cayley
had proven that flight was possible, while
theoretical fluid mechanics had barely taken off.

This disconnect continued to grow when the
Weright brothers, Orville and Wilbur Wright, built
a flying machine capable of self-powered flight in
1903 (NASA, 2016). It was a simple machine, but
it was capable of sustaining itself in the air for 59
seconds and had travelled a total distance of 852
feet. This was a great accomplishment, which
mathematics had determined to be theoretically
impossible. This achievement brought new life
into the field of fluid dynamics as scientists rushed
to come up with a theory of how the Wright
Brothers made their machine fly. One of the first
individuals who attempted to rectify the
disconnect between the mathematics of flight and
physical flight was the German physicist Ludwig
Prandtl. In 1904, he published his theory of flight
(Hoffman and Johnson, 2008; 2009). He knew of
d'Alembert's work and stated that his assumption
of a slip-boundary was incorrect. He believed that
at low viscosities, the surface and the molecules of
the fluid would still interact and exert a friction
force against the direction of fluid flow.

His theory of flight suggested that across the
surface of a wing, a very thin layer of air would
form, which he called the boundary layer. The part
of the boundary layer that was immediately
adjacent to the solid surface was called the no-slip
boundary layer (Hoffman and Johnson, 2009;
Claes Johnson, 2012b). He suggested that in this
no-slip boundary layer the molecules of the fluid
would collide and stick to the surface as it moved
across it, meaning that the velocity of the
molecules in this layer would move at the same
velocity as the surface it was attached to.
Meanwhile, for the rest of the boundary layer, the
molecules of the fluid would also experience the
effects of friction, but these effects would decrease

to zero when the molecules were sufficiently far
away from the surface of the wing, at the end of
the boundary later. This assumption was based on
the belief that the strength of adhesion between the
solid boundary and the molecules were larger than
the strength of cohesion between molecules. Using
this assumption, he built a set of equations that
could be used for this boundary condition, which
was different than the general Navier-Stokes
equations for the fluid outside of this boundary.
Thus, Prandt had shown that d'Alembert had not
accounted for the formation of this boundary layer
near the surface and that the drag was due to the
change of momentum of the molecules in the
boundary layer experiencing friction. Pranddl's
resolution was also able to determine the source of
turbulence as the collision of the different velocity
molecules in the boundary layer. This disrupts the
normally laminar boundary condition into a
turbulent boundary condition once a threshold is
overcome (Hoffman and Johnson, 2009).

Soon after Prandtl, Martin Wilhelm Kutta and
Nikolai Zhukovsky separately published their
theories of lift (Hoffman and Johnson, 2009).
They thought that flights were due to a difference
in pressures on the wing. They assumed that air
would be trapped circulating around the wing
going from over top the surface and rotating into
opposite direction of movement beneath the
bottom of the wing; this is depicted in Figure 2
(Claes Johnson, 2012b).

Their model found that the addition of this
circulating air would cause the velocity of the
molecules to increase in speed, in the direction of
vortex movement, at the top of the wing, and slow
down as it moves against the curl of the vortex
beneath the wing. This would cause a difference in
pressure favouring the upper surface of the wing,
which would form a pressure gradient that would
force the wing upwards (Hoffman and Johnson,

2009).

Exactly how the circulating air was formed was not
clear, but it was thought to be the result of the
sharp trailing edge guiding the motion of the air



Figure 2: Kutta-Zhukovsy's
circulation theory suggests that
there was a circulating airflow
which revolved around the wing.
The molecules above the wing
would move in the same direction
as the circulating airflow and would
result in a low pressure on the
upper surface of the wing. The
circulating airflow at the lower
surface of the wing would act
against the natural direction of
airflow, which caused a retardation
of velocity and would result in an
increase in pressure. This pressure
gradient between the upper and
lower surface acts on the wing to
create lift. Image adapted from
(Hoffman and Johnson, 2009).
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around the wing (Claes Johnson, 2012b). Though
neither theory was confirmed, both Prandd's
theory of drag and Kutta-Zhykovsky's theory of
lift would be used in calculations for 100 years and
was sufficient to design aerodynamic wings and to
further develop the field of fluid mechanics. For
100 years, this was the most widely accepted
theory of flight and was found in all advanced fluid
dynamic textbooks (Hoffman and Johnson, 2009;
Claes Johnson, 2012b).

Before any steps can be made towards
understanding the mathematics of flight, a basic
understanding of vector calculus and fluid
mechanics is required.

Vectors are simply a subset of tensors known as
first-rank tensors. On a similar vein, scalars are
called zeroth-rank tensors. Tensors are also
composed of a magnitude and a direction.
Similarly to how vectors can describe forces at a
point, a tensor describes the forces acting on a
surface. Taking a hypothetical solid shape, it can
be assumed that the forces on it could be
represented as the net vector force acting on the
center of mass. However, in fluid dynamics, this
interpretation is too limited because it does not
take into account the movement of fluid flowing
across a surface. This movement will cause a force
on the surface that is parallel to the direction of the
surface. Thus, tensors are better used to represent

Figure 3: Each Tensor T is composed of 3 other
vectors, o, which show how the plane on each
face are affected by some force. Image
adapted from (Sanpaz, 2011)

the mathematics behind fluid motion. This also
means that each direction of the space would have
3 vectors built into the tensor for the face
orthogonal to that direction, resulting in a net total
of 9 different vectors; this can clearly be shown in

Figure 3.

Hoffman and Johnson were able to solve
d'Alembert's paradox using 5 simple equations.
These equations involve the variables: #, which is
a velocity vector composed of #;,u5,u3, also written
as u = (u1,uzu3); pressure, p; viscous shear stress, 0;
volume force, £ the net flow velocity, g and f3,
which is the small skin friction coefficient



(Hoffman and Johnson, 2008; 2009; Claes
Johnson, 2012c).

The following 5 equations are the ones which
Johan Hoffman and Claes Johnson started with to
proof their theory:

t+Ww-VYu+Vp—-V-a=f nQxIl (
V-u=0 mnQxI (

U, =49 onT xI (

0y = Py onTxI (

u(-,0) = u° inQ (

First, it is important to note the dimensions to
which these equations apply. The first 2 equations
involve a volume, 2, in R3 and a time interval, 7,
while the next 2 equations involve the boundary
surface, [, that encompasses 2 and time interval /.
Essentially, the first 2 equations describe
properties of a volume and the next 2 equations
describe the surface of that volume. The last
equation deals with the volume (2 at time 0 because
this is standard notation for setting an initial
variable condition. Equation 1 is the Navier-
Stokes equation solved for force, f In this
equation, % denotes the derivative of velocity with

. d .
respect to time, —u(t). The second equation

shows that the divergence velocity, V-, of the fluid
is 0. This is based on the assumption that the fluid
is incompressible, one which all other major
theories have made. Equation 3 states that the
normal velocity, #,, of the fluid at the boundary is
equal to the net flow velocity g across the
boundary. This quantity is zero for an airplane
wing, because no air is flowing directly into or out
of the wing. In the fourth line, we have that the
tangential stress, 0, is equal to the tangential
velocity, #,, multiplied by skin friction coefficient,
B (Hoffman and Johnson, 2008; 2009). Here we
note that Prandtl had set the value of f to be large
due to his assumption of a no-slip boundary, and
stating that the tangential friction between the air
and the wing was what caused the formation of
drag. D'Alembert, Johan Hoffman, and Claes
Johnson, on the other hand, assumed that there
was no friction at the boundaries (8 = 0). Solving
for potential flow, Hoffman and Johnson got the

same result as d'Alembert: a lack of drag f'= 0
(Hoffman and Johnson, 2008; 2009; Claes
Johnson, 2012¢). However, what they did realize
was that this result only existed in theoretical
situations, and that in the real world, this solution
was unstable due to the two points of instability in
the equation (Hoffman and Johnson, 2008; 2009;
Claes Johnson, 2012¢). The first point being:
0=V(2ve(n)) and 0,=2ve(u), where v is the
viscosity of the fluid and &(#) is the usual velocity
strain (Hoffman and Johnson, 2008; 2009).
Although small, the effect of viscosity in these
equations is what causes the potential solution to
fail as a physical solution.

This instability can be visualized by considering
the difference between two different yet similar
states. First, let (v,q,7) = (u—U,p —p,0 — 7)
then the new equations appear in the form
(Hoffman and Johnson, 2008; 2009):

v+ Vrv+@w-VHu+Vg-V-t=f inQxI

V-v=0 inQxI

u'n=g—4g onT X1
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The key part of these equations is the Vit, which is
the divergence of u. As shown by the
incompressibility assumption in equations 2 and
7, Vi must also equal 0. As stated before, u is a
velocity vector built with component functions:
(u1,u2,13), thus U must also be built from similar
component functions (U, Uy, Uz) then Vil is a 3
by 3 matrix in the form:

ou, OJu,; 0u,

dx 0dy 0z

_  |0u, o0u, OJdu,
Vu =

ox Jdy 0z

du; Oduz O0u;

dx 0y 0z

When finding the trace of this matrix, it was found
that it was equal to the equation for the divergence,
which was 0. This results in the trace of this matrix
also being equal to 0. Since the trace is also defined
as the sum of the possible eigenvalues, or solutions
to the matrix, there must be both positive and
negative eigenvalues. This plays a major role in



finding the vorticity solution of this situation. By
applying the cross divergence operator V X to the
Navier Stoke's equation, we can get the vorticity @
equation, where it is important to know that w =
V X u. Since it is a cross product, the direction of
the end vector depends on u, which means that
is highly affected by the sign of the solution. Since
both positive and negative solutions are possible it

Lift : 28.58, Drag : 2.90

Ratio L/D : 9.85

and Stokes' potential solutions; however the issue
they had was that the potential solution also had
an additional high pressure zone behind the solid
surface. Hoffman and Claes were able to realize
that the potential solution behind the airfoil was
very unstable since it is caused by the collision of
different flows of fluid, therefore in real life any
small perturbations of the flow around the wing

Figure 4: A simulation using the Wind Tunnel software showing that the intensity of
the lift force (blue, low pressure) is about 9.85 times as big as the intensity of the drag
force (red, high pressure). There is also no high pressure at the trailing edge of the
wing, which was observed in Figure 1 (Algorizk, 2015).

is easy to see how the potential solution is unstable.

Thus, in their paper "The Mathematical Secret of
Flight", Hoffman and Johnson concluded that
flight was only possible due to the production of a

large lift to drag ratio, % (see Figure 5). This ratio
compares the amount of lift generated to the drag
produced, therefore a ratio of 10 would mean that
a plane is able to travel 10 metres for every 1 metre
it descends (Hoffman and Johnson, 2008; 2009;
Claes Johnson, 2012c¢). Their theory of flight was
centered around 3 main ideas. These include the
attachment of air to the leading edge of the wing,
increasing the pressure against the motion of the
wing. The lift created through the pressure drop at
the top of the wing causes air to push upwards on
the wing. Both of these are evident in d'Alembert's

would cause the potential flow at the back of the
wing to collapse into a different equation. They
found that instead of potential flow at the trailing
edge, a rotational flow would form instead due to
the collision of molecules behind the trailing edge
from the bottom and top of the wing. This created
an oscillating velocity and the formation of
alternating, counter-rotating pressure vortices (see
Figure 6) (Hoffman and Johnson, 2009; Claes
Johnson, 2012c).

These vortices would form with a low pressure
inside that would negate the high pressure
surrounding them. This instability mechanism is
what decreases the pressure at the trailing edge of
the wing and causes a net high pressure pushing
against the wing, which is where the drag
originates. The forward attachment of the flow is



Drag : 2.89 Ratio L/D :'9.88

Figure 5: A simulation using the Wind Tunnel software showing that the
alternating counter rotating pressure vortices at the trailing edge of the wing

(Algorizk, 2015).
physical, due to the solid boundary and not from
opposing flows, which results in much smaller
perturbation growth than at rear separation, which
is why vortices only form at the trailing edge
(Hoffman and Johnson, 2008; 2009; Claes
Johnson, 2012c).

Finally, after 250 years, a coherent resolution to
d'Alembert's paradox has been found. After
proving Prandd and Kutta-Zhukovsy incorrect,
Hoffman-Johnson reconciled the mathematics of
field dynamics with observations in the physical
world. They were able to determine that
d'Alembert's potential was not stable due to the
creation of both positive and negative solutions to
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This instability causes the
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a net drag pushing against
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wing, a simple physical
observation that has only
now been given
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Their solution has been

tested in many

and has

correctly mimicked the

computations

peculiarities of real life.
Those who are scared of
flying may now breathe a
sigh of relief as we can
finally fully answer "What keeps planes up?".
Thanks to this finding, airplane developers are take
greater steps to improving the design of airplane
wings and make air travel much more efficient.
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