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INTRODUCTION 

SUMMARY 

This article covers the history of flight from 1400s to the modern era, focusing on 
d'Alembert's paradox and explanations of how lift is created. It is unnerving to think that it 
wasn't until 2008 that scientists were finally able to answer the question of how planes 
remain in the air. D'Alembert's paradox has troubled mathematicians and aeronautic 
experts for years. It was a simple statement made in 1749, but the implications have 
influenced the field of fluid dynamics for centuries to come. The statement made by 
d'Alembert essentially concluded that there is no mathematical explanation for the 
physical observation of drag on any solid object moving through a fluid, making airborne 
flight an unexplainable enigma. However, in 2008, a paper was published finally providing 
a coherent resolution to d'Alembert's paradox as well as fully explaining how lift and drag 
are created (Hoffman and Johnson, 2008; 2009). After disproving the previous theories 
provided by Prandtl and Kutta-Zhukovsy, Johan Hoffman and Claes Johnson built on the 
work of d'Alembert and Stokes and were able to identify the instability mechanism which 
their predecessors overlooked. Using this mechanism, they were able to explain the cause 
of net drag on the wing. With this understanding, airplane developers can take greater steps 
to improving the design of airplane wings and make air travel much more efficient. 
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GENERAL THEORY OF FLIGHT

Figure 1: The potential flow solution according to 
the Navier-Stokes equation, with blue areas 
representing areas with low pressure while red 
areas represent areas of high pressure. Stokes and 
d'Alembert both found that the two areas of high 
pressure push against the sphere and cancel each 
other out resulting in no net drag, a conclusion 
which did not agree with observations made in 
the physical world (Claes Johnson, 2012a). (Image 
adapted from Incredio, 2009). 
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PRANTL’S THEORY OF NO SLIP 
BOUNDARY 

KUTTA-ZHUKOVSY THEORY OF 
CIRCULATING AIRFLOW 
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HOFFMAN AND CLAES’ 
INSTABILITY SOLUTION 

VARIABLES 

σ

β

Figure 3: Each Tensor T is composed of 3 other 
vectors, σ, which show how the plane on each 
face are affected by some force. Image 
adapted from (Sanpaz, 2011)  

Figure 2: Kutta-Zhukovsy's 
circulation theory suggests that 
there was a circulating airflow 
which revolved around the wing. 
The molecules above the wing 
would move in the same direction 
as the circulating airflow and would 
result in a low pressure on the 
upper surface of the wing. The 
circulating airflow at the lower 
surface of the wing would act 
against the natural direction of 
airflow, which caused a retardation 
of velocity and would result in an 
increase in pressure. This pressure 
gradient between the upper and 
lower surface acts  on the wing to 
create lift. Image adapted from 
(Hoffman and Johnson, 2009). 
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EQUATIONS 

𝑢̇ + (𝑢 ∙ ∇)𝑢 + ∇𝑝 − ∇ ∙ 𝜎 = 𝑓 𝑖𝑛 Ω × 𝐼

∇ ∙ 𝑢 = 0 𝑖𝑛 Ω × 𝐼

𝑢𝑛 = 𝑔 𝑜𝑛 Γ × 𝐼

𝜎𝑥 = 𝛽𝑢𝑥 𝑜𝑛 Γ × 𝐼

𝑢(∙ ,0) = 𝑢0 𝑖𝑛 Ω
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(𝑣, 𝑞, 𝜏) = (𝑢 − 𝑢̅, 𝑝 − 𝑝̅, 𝜎 − 𝜎̅)

𝑣̇ + (𝑢 ∙ ∇)𝑣 + (𝑣 ∙ ∇)𝑢̅ + ∇𝑞 − ∇ ∙ 𝜏 = 𝑓 𝑖𝑛 Ω × 𝐼

∇ ∙ 𝑣 = 0 𝑖𝑛 Ω × 𝐼

𝑢 ∙ 𝑛 = 𝑔 − 𝑔̅ 𝑜𝑛 Γ × 𝐼

𝜏𝑥 = 0 𝑜𝑛 Γ × 𝐼

𝑣(∙ ,0) = 𝑢0 − 𝑢̅0 𝑖𝑛 Ω
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∇ ×

ω

 𝜔 =

∇ × 𝑢

𝑢 ω

𝐿

𝐷

Figure 4: A simulation using the Wind Tunnel software showing that the intensity of 
the lift force (blue, low pressure) is about 9.85 times as big as the intensity of the drag 
force (red, high pressure). There is also no high pressure at the trailing edge of the 
wing, which was observed in Figure 1 (Algorizk, 2015). 
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CONCLUSION 
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Figure 5: A simulation using the Wind Tunnel software showing that the 
alternating counter rotating pressure vortices at the trailing edge of the wing 
(Algorizk, 2015). 


