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INTRODUCTION 
The idea of applying concepts from the natural 
sciences to try to explain social science phenomena 
is at least 25 centuries old. One of the first 
recorded comparisons between the properties of 
natural sciences and the behaviour of humans 
occurred when the Greek philosopher Empedocles 
stated an idea to the effect of “Humans are like 
liquids: some mix easily like wine and water, and 
others like oil and water refuse to mix.” (Stauffer, 
2009). Since then, there have been a few 
individuals who drew comparisons between 
ordered physical systems and the behaviour of 
populations. For example, in 1942, Majorana 
compared quantum physics to social probabilities 
in human behaviour. However, with the exception 
of a select few individuals, the field of sociophysics 
took off in the early 2000s with the popularization 
of ideas such as opinion dynamics within academia 
(Stauffer, 2013). 

Mathematical models of opinion formation 
examine society as a physical system in which 
individuals and their interactions are viewed as the 
microscopic scale of the system governed by rigid 
rule sets, and the emergent macroscopic trends are 
used to reflect overall societal opinion. In general, 
these models deal with binary opinion systems in 
which there is a general assumption that the 
opinion of an individual is in some way related to 
the opinions of their neighbours (Oz, 2008).  

Models of opinion dynamics, and sociophysics in 
general, rely on the law of large numbers. This law 
is a statistical theorem that states that as the 
number of randomly generated variables increases, 
the average approaches the theoretical mean 
(Routledge, 2015). A simple system used to 
understand this is coin flipping. When just one 
coin is flipped, although the probability of either 
outcome is 0.5, you cannot predict with any 
certainty whether that single coin toss will show a 
head or tails. However, after 500 coin tosses, it is 
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reasonable to assume that the long-term behaviour 
is approaching the 0.5 probability. Thus, this law 
applied to opinion dynamics means that with a 
large population, individual fluctuations are 
averaged out, and general trends in data are more 
visible. In turn, this also implies that the 
justification for the human aspect of these models 
stems from mass psychology rather than individual 
psychology. 

This paper offers a brief history of the models 
developed to deal with the opinions of 
populations. However, the focus will lean more 
towards the examination of two variations of a 
fairly recent model of opinion dynamics called the 
Sznajd model. These two model variations were 
simplified and represented in MATLAB to analyze 
and compare the behaviour and validity of these 
models given an initial random population with 
varying size. 

MATHEMATICAL BACKGROUND 
Many models have been proposed to try to 
examine the opinion dynamics of populations. In 
general, these follow the theme of an initially 
disordered system that is brought to a more 
ordered state under certain conditions (Castellano, 
Fortunato, and Loreto, 2009). The key part of 
opinion dynamic models is the overarching rule 
that guides how interactions between various 
individuals in the population occur. In most 
models, the opinion of a single individual is 
updated after each time step; this change is affected 
by the opinions of the individual’s neighbours. 
Additionally, all models must define the space in 
which their population exists. The models 
presented in this paper treat populations as discrete 
points on a lattice rather than a continuous plane 
(Sen and Chakrabarti, 2013). This setup results in 
an assumption that individuals in the model are 
stationary. 

ISING MODEL AND VARIATIONS 
In physics, the 1924 Ising model is a mathematical 
model used for ferromagnetism (Sznajd-Weron, 
2005). The Ising model looks at each site on a 
square lattice as an electron with a value assigned 
of either +1 (spin up) or -1 (spin down). Thus, 
each pair of neighbours at <i,j> has an energy of -
JSiSj where J is some proportionality constant and 
S denotes spin. This means that each parallel pair 
of spins contributes -J to the total energy, and each 

antiparallel pair contributes +J to the energy 
(Stauffer, 2013).   

Therefore, the total energy of the system is given 
by: 

𝐻 = −𝐽 𝑠&𝑠'
(&,'*

 

To minimize energy, each spin is pushed to be 
aligned with its neighbours (Castellano, Fortunato 
and Loreto, 2009). Thus, the Ising model typically 
results in a higher probability of two neighbouring 
electrons having the same spin (Stauffer, 2009). 
Metropolis dynamics of the Ising model takes each 
elementary move to be a single spin change. This 
change in spin is accepted with a probability of:  

𝑃 = 𝑒
-∆/

012  

where T is temperature, kB is the Boltzmann 
constant, and ∆E is the change in energy when this 
change takes place (Castellano, Fortunato, and 
Loreto, 2009). As this probability of acceptance is 
dependent on temperature, there is a critical 
temperature that denotes whether or not 
macroscopic ordering will occur. Above the critical 
temperature, there is macroscopic disorder even 
over many time steps. However, despite the 
disorder, there are still local clusters of just spin up 
(+1) or just spin down (-1). Below the critical 
temperature, macroscopic ordering occurs, 
because these local clusters spread to become 
global (although limited by the bounds of the 
lattice). Thus, the stable states of either all positive 
or all negative spins would emerge (Castellano, 
Fortunato, and Loreto, 2009).  

The dynamics that emerge from the Ising model 
due to physical interactions can be applied to a 
human system to develop a model of opinion 
dynamics (Stauffer, 2009). In this case, neighbours 
on a lattice influence each other such that adjacent 
individuals ‘want’ to have similar opinions because 
energy functions as ‘unhappiness’ due to 
disagreement. Due to the application of physical 
phenomena to social dynamics, temperature has a 
social meaning. The social application of 
temperature denotes both the overall 
approximation of events that influence decision 
making of individuals not included in the 
microscopic rules and denotes the tolerance of the 
individuals in the population. As expected, 
changing these factors can change the behaviour of 
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the system, just as going above or below critical 
temperature will change the ferromagnetic system. 
When temperature can grow arbitrarily large, 
neighbours will not affect an individual’s views. 
When temperature is of an intermediate value, 
small clusters form with similar opinions, but no 
overarching domains are present. When 
temperature is small, these domains extend to 
infinite size and all members of the population 
have the same opinion (Stauffer, 2009). 

SZNAJD MODEL 
Since the early 2000s, the vast majority of 
investigations into opinion dynamic models have 
been centered on one of three models: Sznajd, 
Krause-Hegselmann, and Deffuant (Stauffer, 
2009). Sznajd is addressed in this paper as it fits 
the best with old investigations, such as Ising 
variants in that it utilizes discrete opinions. In 
contrast, the Krause-Hegselmann and Deffuant 
models allow agents in their population to have 
continuous opinions within a range (Stauffer, 
2009).  

The Sznajd model uses the concept of Ising spins, 
but slightly modifies the physical model to fit with 
human interactions rather than to make a direct 
correlation with physical phenomena. It is based 
around modifications of the microscopic 
interaction rules to make them more in line with 
human group psychology (Sznajd-Weron, 2005). 
The main relation between the Sznajd and Ising 
models is the application of the Ising spin chain 
idea, in which the spins are defined as binary 
variables that can influence the ‘opinion’ of 
neighbours (Sznajd-Weron and Sznajd, 2000). 
The basic rule of Sznajd states that, if there is a pair 
of neighbours in agreement, the individuals 
surrounding them will change their opinions to be 
in line with this spin. Thus, in one dimension, it 
can be stated that if Si=Si+1 then Si-1=Si and 
Si+2=Si. Correspondingly, in two dimensions, a 
pair of neighbours in agreement will influence the 
six neighbours surrounding them (Sznajd-Weron, 
2005). 

There are two variations of the Sznajd model. Both  
variations deal with the agreement of neighbours 
in the same way, but they differ in their treatment 
of the disagreement of neighbours (Sznajd-Weron 
and Sznajd, 2000).  In the original model put 
forward in 2000, if Person A and Person B are 
neighbours in disagreement, the surrounding 

individuals of Person A take the opinion of Person 
B and vice versa. This was meant to emulate the 
act of an argument whereby neighbours are 
influenced. The long-term behaviour of a system 
following this dynamic rule would either be 
ferromagnetic (consensus) or antiferromagnetic 
(stalemate). For this reason, the Sznajd model was 
originally named “United we stand, Divided we 
fall” (Sznajd-Weron and Sznajd, 2000). The 
second variation of the Sznajd model was proposed 
in 2005. In this model, if Person A and Person B 
are neighbours in disagreement, the surrounding 
individuals of Person A would take Person A’s 
opinion and vice versa. The only stable state that 
can come of this model is ferromagnetic 
(consensus) (Sznajd-Weron, 2005). 

There are a few key psychological phenomena that 
contribute to the validity of the Sznajd model as a 
simplified description of human behaviour. The 
primary focus of the dynamic rules is on social 
validation. Simply, social validation is the 
phenomenon in which individuals tend to 
conform to the actions of others when they are in 
a group. In terms of group psychology, this means 
that when more than one person has a certain 
behaviour, individuals around them will start to 
adopt this behaviour (DeMers, 2015). This 
phenomenon was demonstrated through Asch’s 
conformity experiments in the 1950s which tested 
the extent to which people tend to conform to the 
majority (Bond and Smith, 1996). The 
experimental setup involved showing a group of 
lines to test subjects. Before the subjects answered 
if the lines were of the same length, experimenters 
acting as subjects would incorrectly state an 
answer. Results found that subjects of the 
experiment would usually conform to this false 
opinion; only 29% of the subjects stated the 
correct answer rather than the most popular 
answer (Bryn Mawr College, 2000). Asch 
concluded that the perception of group consensus 
results in the conformity of individuals to a set 
opinion. Finally, it was found that an individual 
was more likely to conform to popular opinion if 
the individual identified with the majority – that 
is, if there are similar characteristics that both the 
individual and the majority hold (Bond and 
Smith, 1996). Thus, in the Sznajd model, this rule 
applies due to the ‘majority’ opinion of the pair 
affecting its neighbours rather than distant 
individuals. 
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METHODS 
The modified MATLAB models created for this 
paper were designed to compare the two variations 
of the Sznadj model. Each variation consists of two 
sections of code – the first examines the behaviour 
of the system over a set number of time steps, while 
the second examines the number of time steps 
needed to reach a stable state (The MathWorks, 
Inc, 2015). 

All initial matrices used for the two models for 
each variant were developed using the random 
matrix function. This automatic function 
randomizes a matrix of a given size with numbers 
in the range 0 to 1. This was converted to a 
random matrix of discrete values of -1 and +1, by 
setting original values between 0 and 0.5 to equal 
-1, and values between 0.5 and 1 to equal 1.  

Both models apply their respective dynamic rules 
by utilizing a concept known as a Monte Carlo 
simulation. Monte Carlo is the act of 
approximating an overall expectation based on the 
behaviour of random samples; as samples are 
chosen by chance, this technique was named after 
an international gambling city (Anderson, 1999). 
When performing a mathematical model on a 
system where all the points in that system should 
behave according to a predefined rule, such as the 
Sznajd Model, a Monte Carlo simulation can be 
used. The Monte Carlo method takes random 
samples, and applies the rule at that site 
(Anderson, 1999). 

In these models, the Monte Carlo simulations are 
performed using the randomization functions of 
which MATLAB is capable. First, an initial point 
(i,j) is chosen at random by generating two 
separate random numbers that fall in the matrix 
dimensions for both i and j. As the system is a two-
dimensional matrix, each point has four 
neighbours. Thus, after this initial point is 
generated, another number is randomly generated 
between 1 and 4. This number chooses the pair 
that the dynamic rule will be applied to – a pair 
composed of that initial point and a randomly 
chosen neighbour.  

As discussed in background, the two variations 
addressed have the same rule for when the pair 
chosen are in agreement, but deal with 
disagreement in different manners. Thus, in both 
variants, when the randomly chosen pair have 
consistent opinions, the six neighbours 

surrounding the pair take the opinion of this pair 
(Figure 1). 

 

The two variants of the Sznajd model that were 
compared differ in their treatment of 
disagreement. The microscopic description of this 
behaviour is shown in Figure 2.  

							

Figure 2: Illustration of the cases of initial pairs 
in disagreement on the lattice generated by the 
MATLAB model. The grey boxes in the “Before” 
column indicate that those boxes could take 
either white or black values and it would not 
affect the outcome. At each time step, the initial 
pair would be randomly chosen, and the “After” 
column displays the behaviour of the 
neighbours near the pair as per the rule of the 
model variant (denoted 1 and 2 in the row 
headings).  
 

Figure 1: Illustration of the cases of initial pairs in 
agreement on the lattice generated by the 
MATLAB model. The grey boxes in the “Before” 
column indicate that those boxes could take 
either white or black values and it would not 
affect the outcome. At each time step, the initial 
pair would be randomly chosen, and the “After” 
column displays the behaviour of the 
neighbours near the pair. 
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When designing the modelled system, periodic 
boundary conditions were utilized. This was done 
to avoid errors that occur at boundaries if the 
general interior rule was applied universally. For 
example, if looking at a pair of neighbours 
composed of a random point and a neighbour to 
the right, one of the neighbours that should be 
affected is one to the left of the initial point. If 
away from the boundaries, this could be stated as: 

If A(i,j) is equal to A(i,j+1) 

Then A(i,j-1) should equal A(i,j) 

However, with a lattice of finite dimensions, the 
problem is encountered where the initial point 
could be on a boundary. For example, if the initial 
point is in initial column 1, a point one column to 
the left (A(i,j-1)) does not exist. Thus, the modular 
function is implemented to make assigning a point 
which should lie outside the matrix dimensions to 
loop back around to the other side of the matrix.  

For example, take A(i,1) as the randomly 
generated point in a lattice that is 10 by 10. If we 
use the general ‘then’ statement as A(i,mod(j-
2),y)+1), then we would use A(i, mod(-1,10) +1). 
This outputs the resultant point of A(i,10) 
meaning that the point ‘to the left of the 1st 
column’ is equal to the last column. Importantly, 
this modular design still outputs what we would 
expect when the initial point is not on the 
boundaries. If we take the point A(i,6) as the 
randomly generated point in a 10 by 10 lattice, we 
can see that applying this modular ‘then’ statement 
would result in A(i,mod(4,10)+1), which is equal 
to A(i,5) as expected. When applied in all 
directions, the use of the modular function results 
in the system looping and essentially functioning 
as a sphere. 

For each model variation, there were two different 
sections of code developed, which each output 
different information. The two sections of code for 
each variation follow the descriptions included 
below; they were similar in that they all allowed for 
varied matrix size, followed the same dynamic 
rules for respective variation, and utilized the 
modular function to develop the space on which 
the individuals reside as a sphere.  

RESULTS 
The first section of code for each rule was relatively 
simple. It was made such that it applied the 
dynamic rules for a given number of time steps, 

showed the movement of the matrix over time, 
and graphed the percent of positive (yes) opinions 
on the lattice. Tracking the movement of the 
matrix over time utilized a three dimensional array 
indexed by time step. At each time step in this 
array, one could find the two-dimensional matrix 
that displayed the state of the population at that 
time.  

The second section of code for each model variant 
extracted data useful for effectively comparing the 
two variants. It calculated the number of steps 
required by each variant to reach one of the stable 
states discussed in the background – stalemate or 
consensus. Interestingly, each of those options has 
two types; intuitively, it is known that consensus 
can occur either as all yes (+1 spin) or all no (-1 
spin). Stalemate can also occur in two ways, 
because the tiles alternating can be shifted – such 
that the top left corner is yes, or such that the top 
left corner is no. For each variant, this model 
computed the number of steps required for a set 
number of trials on a set number of matrices. The 
output was a scatter plot of the average of the 20 
trials for each matrix, an overall average across all 
trials and matrices, and a pie chart showing the 
proportion of the stable states achieved that were 
of each type (Figure 3).   

 

 

Figure 3: The proportion of each type of stable 
state achieved after 30 trials of 30 randomly 
generated 12 by 12 matrices. (A) displays the 
output for variation 1, described in the methods, 
while (B) shows the outputs for variation 2. 
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Examination of the general results from the second 
model of each rule shows one of the clearest 
distinctions between the two dynamic rules. Rule 
1, which functions using the idea of argument 
when two neighbours disagree, can yield both a 
consensus and stalemate stable state. On the other 
hand, rule 2 yields consensus unanimously. 
However, in both of these models, there doesn’t 
appear to be a trend showing that any one possible 
stable state is preferred over the others.   

When 30 different random matrices are tested 
with 30 trials each (net of 900 trials), there appears 
to be around equal partition of the stable states 
possible. For rule 1, there are 4 stable states of 
which two were stalemate, and two were consensus 
(yes or no). As seen in Figure 3, half of trials 
yielded a stalemate stable state, while a quarter 
yielded each of yes consensus and no consensus.  
For rule 2, in which there are two stable states, half 
of the trials yielded a yes consensus and half of the 
trials yielded a no consensus. 

Thus, though the different variants have different 
possible stable states, all stable states are essentially 
equally possible for each variant. This means that 
there is no inherent pressure towards a final 
outcome within each model. However, the second 
variant has no possibility of stalemate and the 
population present always reaches consensus. 

As shown in Figure 4, both dynamic rules result in 
a wide range between the average of 30 trials for 
each matrix. However, it becomes clear (especially 
when looking at very high numbers of trials) that 
both the average number of runs across all trials of 
all matrices, and the range for the average of 30 
trials, vary when the different dynamic rules are 
applied. The first dynamic rule, which utilizes the 
idea of an ‘argument’ when the chosen pair 
disagrees, results in a mean of 1.4033*103 
iterations necessary to reach a stable state. 
Alternatively, the second dynamic rule resulted in 
a mean of 2.4618*103 iterations until a stable 
state. This trend between the two variants 
remained mostly consistent over different matrix 
sizes and trial numbers.  

There are a few possible reasons that could account 
for this difference in number of iterations required 
to reach stable state. The first possible reason is 
fairly simple – the first variation is able to reach 
either stalemate or consensus. Thus, the first 
variation has four possible states it can reach in 

order to achieve stability. Alternatively, the second 
variation can only reach consensus; thus, it only 
has two states that it can reach in order to be stable.  

Another possibility is the interaction between the 
various rules and states. In the case of the second 
rule, the black and white solid sections tend to get 
more separated and have more stability on their 
side of the lattice. On the other hand, there is more 
interaction and less stability with the first rule. 
Often dynamics such as that displayed in Figure 5 
occur. 

Figure 5 shows the dynamic interaction between 
the checkered stalemate state and the consensus 
(white) state. There were very few areas with no 
movement in either section due to the dynamic 
rules, and one state can quite quickly take over the 
matrix. This can be seen more quantitatively in 
Figure 6. This figure shows there is a large 

Figure 4: Scatter plots of the average of number 
of runs to reach a stable state. This data was 
generated using 30 trials for 30 separate 
randomly generated initial 12 by 12 matrices. (A) 
shows the data generated when dynamic rule 1 
was applied while (B) shows the data generated 
when dynamic rule 2 was applied. 
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fluctuation in the percent of “yes” voters on the 
matrix irrespective of the stable state eventually 
reached. The spikes up and down, which can 
encompass a large range, show that there is quite a 
bit of movement between various areas displaying 
a stable state behaviour. 

DISCUSSION 
Models inspired by physical phenomena can work 
effectively when applied to sociophysical areas 
such as opinion dynamics. The simplification 
presented in this paper was developed using the 
dynamic rules proposed in the established Sznajd 
model which uses concepts from the Ising model 
of ferromagnetism and modifies them to better fit 

with psychological phenomena. This paper 
presented two different variations of the Sznajd 
model that each used distinct iterative rules. The 
setup for both models required a Monte Carlo 
simulation of a lattice. The two variations used the 
same rule when a pair of agreeing neighbours was 
chosen, whereby the six surrounding neighbours 
took that opinion. In the case of disagreement, the 
first variation had the neighbours of individual A 
take the opinion of individual B; the second 
variation had the neighbours of individual B take 
the opinion of individual A.	 

The results yielded were quite different for the two 
variations over many time steps. When these 
iterative rules were applied on the same initial 
setup, the first variation resulted in a long-term 
stable state of either consensus or stalemate. 
Alternatively, the second variation resulted 
exclusively in consensus.  

The accuracy of both of these stable states to 
psychological phenomena can be argued. Due to 
the Asch conformity experiment on which this 
model is based, the idea of long-term consensus 
has merit. If individuals generally wish to fit in 
with the opinions of others and adhere to the 
majority, consensus seems possible in many 
situations. Although possibly anecdotal, examples 
of population conformity throughout history 
further add to our perception of the validity of 
achieving consensus in a population. However, 
especially if regarding points on the lattice as small 
groups of likeminded people rather than 
individuals, the stalemate solution cannot be 
discounted completely. Although we do not 
traditionally think of individuals as arranging 
themselves in such a way, the idea of small 

Figure 5: Still frames throughout the evolution of 
two randomly generated 12-by-12 matrices. Each 
row shows the two iterative rule variations 
applied to the same initial matrix. The left 
column shows two instances of variation 1, while 
the right column shows variation 2. 
 

Figure 6: Graphs showing the percent of positive voters over iterations when running variant 1. (A) 
corresponds to an eventual stalemate. (B) corresponds to positive consensus. (C) corresponds to 
negative consensus. All graphs show large fluctuations in the proportion of positive voters throughout 
their respective evolutions to stable states. 

Figure 6: Graphs showing the percent of positive voters over iterations when running variant 1. (A) 
corresponds to an eventual stalemate. (B) corresponds to positive consensus. (C) corresponds to 
negative consensus. All graphs show large fluctuations in the proportion of positive voters throughout 
their respective evolutions to stable states. 
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communities of like-minded people staying 
clustered and separated from those who disagree 
with them could apply in some situations.  

CONCLUSION 
The choice of model variant may depend more on 
how it will be applied, rather than an inherently 
better solution. If looking at individuals, perhaps 
the evolution that always achieves conformity is 
more fitting with group psychology. However, if 
trying to model a larger scale system such as 
clusters of people in agreement, without regarding 
intra-cluster dynamics, the first model presented 

may be of more use. It is important to note that no 
model can ever exactly predict the behaviour of a 
system of biological individuals. However, as more 
variables are considered and modelled, the model 
can approach accuracy much more closely. 
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