Prostate cancer is the most common type of cancer afflicting males in the United States. The question of what treatment regimen will optimally balance efficacy with minimal adverse effects is thus one that physicians are faced with increasingly often. Dr. Danu Tang, Associate Professor of Medicine, concluded that elevated levels of the protein MAN2C1 predispose patients to more aggressive forms of the disease. In studying the mechanism of PTEN, a tumor suppressor protein, Tang discovered that its protective effects are impaired by MAN2C1. This finding provides physicians with a potential diagnostic marker for recognizing more severe cases for the purpose of determining when more aggressive therapy is warranted.


Image adapted from: http://wikimedia.org

The advent of antibiotics has engaged researchers in a tireless race against what was believed to be the rapid microbial adaptation of drug-resistant properties. In a paper published in Nature, the research teams of Dr. Gerry Wright and Dr. Henrik Poinar shone light on a potential means to combat antibiotic-resistant bacteria and may lead to a safer method for treating lung infections in patients with cystic fibrosis.


Image adapted from: http://brain.oxfordjournals.org

Infectious organisms have been known to develop resistance to antibiotic treatment. Recently, researchers Dr. Gerry Wright, Dr. Eric Brown, and Dr. Brian Coombes from the Department of Biochemistry and Biomedical Sciences discovered a novel discovery sheds light on a potential means to combat antibiotic-resistant bacteria and may lead to a safer method for treating lung infections in patients with cystic fibrosis.


Image adapted from: http://www.lscotland.org.uk

Recent research by Dr. Ray Traunt, Professor of Psychology, Neuroscience and Behaviour, discovered that individuals with congenital blindness are able to detect tactile information much faster than sighted people. Goldreich’s methodological approach involved analyzing the ability of participants to perceive the movement of a small probe at the tip of their index finger. From this promising study, Dr. Goldreich hopes to develop software that can track the perceptual ability of blind individuals as they learn Braille.


Image adapted from: http://www.lscotland.org.uk

Dr. Ray Traunt's team is now investigating the ability of these kinase inhibitors to cross the blood-brain barrier. If successful, stage 1 clinical trials could begin in five years.


Image adapted from: http://brain.oxfordjournals.org

His study shows how a pluripotent stem cell can be ‘forced’ into a different cell type based on specific cell surface markers and histone modification marks on gene loci associated with pluripotent specific cell surface markers and histone modification marks on gene loci associated with pluripotent stem cells. Future investigations will involve understanding how these processes apply to induced pluripotent stem cells, which are stem cells generated from adult skin cells.

Dr. Ray Traunt’s team is now investigating the ability of these kinase inhibitors to cross the blood-brain barrier. If successful, stage 1 clinical trials could begin in five years.


Image adapted from: http://brain.oxfordjournals.org

Dr. Michael Bhatia, Director of McMaster Stem Cell and Cancer Research Institute, recently discovered new mechanisms behind the selective ability of human pluripotent stem cells to make important lineage decisions. A pluripotent stem cell can differentiate into 1 of 266 cell types in the human body. Previously, it was believed that all stem cells were alike and had an equal chance of differentiating into specialized cells. However, Dr. Bhatia suggests that this is not really the case. His study shows how a pluripotent stem cell can be ‘forced’ into a different cell type based on specific cell surface markers and histone modification marks on gene loci associated with pluripotent stem cells. Future investigations will involve understanding how these processes apply to induced pluripotent stem cells, which are stem cells generated from adult skin cells.

Recent research by Dr. Ray Traunt, Professor of Psychology, Neuroscience and Behaviour, discovered that individuals with congenital blindness are able to detect tactile information much faster than sighted people. Goldreich’s methodological approach involved analyzing the ability of participants to perceive the movement of a small probe at the tip of their index finger. From this promising study, Dr. Goldreich hopes to develop software that can track the perceptual ability of blind individuals as they learn Braille.


Image adapted from: http://www.lscotland.org.uk

Dr. Ray Traunt’s team is now investigating the ability of these kinase inhibitors to cross the blood-brain barrier. If successful, stage 1 clinical trials could begin in five years.


Image adapted from: http://brain.oxfordjournals.org

Dr. Michael Bhatia, Director of McMaster Stem Cell and Cancer Research Institute, recently discovered new mechanisms behind the selective ability of human pluripotent stem cells to make important lineage decisions. A pluripotent stem cell can differentiate into 1 of 266 cell types in the human body. Previously, it was believed that all stem cells were alike and had an equal chance of differentiating into specialized cells. However, Dr. Bhatia suggests that this is not really the case. His study shows how a pluripotent stem cell can be ‘forced’ into a different cell type based on specific cell surface markers and histone modification marks on gene loci associated with pluripotent stem cells. Future investigations will involve understanding how these processes apply to induced pluripotent stem cells, which are stem cells generated from adult skin cells.

Recent research by Dr. Ray Traunt, Professor of Psychology, Neuroscience and Behaviour, discovered that individuals with congenital blindness are able to detect tactile information much faster than sighted people. Goldreich’s methodological approach involved analyzing the ability of participants to perceive the movement of a small probe at the tip of their index finger. From this promising study, Dr. Goldreich hopes to develop software that can track the perceptual ability of blind individuals as they learn Braille.


Image adapted from: http://www.lscotland.org.uk

Dr. Ray Traunt’s team is now investigating the ability of these kinase inhibitors to cross the blood-brain barrier. If successful, stage 1 clinical trials could begin in five years.


Image adapted from: http://brain.oxfordjournals.org

Dr. Michael Bhatia, Director of McMaster Stem Cell and Cancer Research Institute, recently discovered new mechanisms behind the selective ability of human pluripotent stem cells to make important lineage decisions. A pluripotent stem cell can differentiate into 1 of 266 cell types in the human body. Previously, it was believed that all stem cells were alike and had an equal chance of differentiating into specialized cells. However, Dr. Bhatia suggests that this is not really the case. His study shows how a pluripotent stem cell can be ‘forced’ into a different cell type based on specific cell surface markers and histone modification marks on gene loci associated with pluripotent stem cells. Future investigations will involve understanding how these processes apply to induced pluripotent stem cells, which are stem cells generated from adult skin cells.

Recent research by Dr. Ray Traunt, Professor of Psychology, Neuroscience and Behaviour, discovered that individuals with congenital blindness are able to detect tactile information much faster than sighted people. Goldreich’s methodological approach involved analyzing the ability of participants to perceive the movement of a small probe at the tip of their index finger. From this promising study, Dr. Goldreich hopes to develop software that can track the perceptual ability of blind individuals as they learn Braille.


Image adapted from: http://www.lscotland.org.uk

Dr. Ray Traunt’s team is now investigating the ability of these kinase inhibitors to cross the blood-brain barrier. If successful, stage 1 clinical trials could begin in five years.