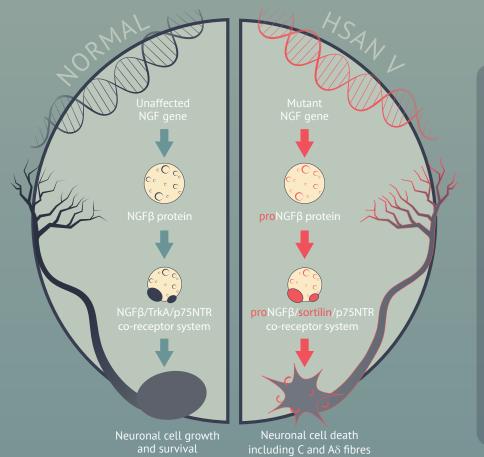

CONGENITAL INSENSITIVITYTOPAINPathoprofileMuthors: Deeksha Kundapur & Sheila Yu
Artist: Sylvia Mohanraj

INTRODUCTION

GENERAL NOCICEPTION

Pain is an essential sensation that has developed in complex organisms as an evolutionary mechanism to signal impending danger. Without pain, day-to-day functions become incredibly compromised. Pain is responsible for triggering the adoption of protective behaviours, such as physical withdrawal from painful stimuli to for tissue protection.¹ Hereditary sensory and autonomic neuropathy type V (HSAN V), generally known as congenital insensitivity to pain (CIP), is a rare autosomal recessive sensory neuropathy. It is caused by defective nociceptive mechanisms, which result in an inability to experience pain.^{2,3} HSANs range from type I to type V, encompassing varying degrees of sensory impairment at each level. Only a handful of individuals experience the clinical symptoms associated with HSAN V, as it is the rarest of the HSAN disorders.² Pain is perceived through nociception: central and peripheral neurological events that encode information regarding noxious stimuli. When the intensity of a stimulus reaches the noxious threshold, primary nociceptive peripheral nerve endings located in the skin, muscles, visceral tissue, corneas, and mucosa depolarize to send signals to their cell bodies in the dorsal root ganglia. There, primary nociceptive neurons synapse with interneurons, which transmit the neural impulse to the thalamus and cortex for pain perception. A spinal nerve contains different types of pain fibres, which are categorized based on anatomical and functional criteria. Of particular interest are the thinly myelinated C fibres, which conduct rapid, sharp and acute pain, and the thicker, unmyelinated A δ fibres, which facilitate delayed, diffused, and dull pain.^{1,4}



Neuron growth, including that of A δ and C fibres, is stimulated by NGF β , a protein encoded by the NGF gene (1p13.2).^{2.5} NGF β regulates the transduction of anti-apoptotic and differentiative signals by binding to the high affinity TrkA receptor and the low-affinity p75NTR receptor; these form a co-receptor system that positively modulates neuronal growth.⁶ More specifically, the binding of NGF β to TrkA triggers the phosphorylation of PLC- γ 1 and RAS/ERK, initiating signalling pathways necessary for cell growth, survival, proliferation, and differentiation. Additionally, the binding of NGF β to p75NTR activates JNK/C-jun, resulting in a cascade that transmits noxious stimuli.⁶⁻⁸ In contrast to the normal nociceptive mechanism described above, HSAN V is characterized by mutations in the NGF gene, producing mutant NGF β that does not undergo normal post-translational processing events.^{2.9} As a result, it remains as immature proNGF β that binds to a related, but different co-receptor system: p75NTR and sortilin.⁹ The activation of this system triggers a signal cascade responsible for apoptosis, which, in the absence of cell survival and growth factors, results in neurodegeneration. Nerve biopsies demonstrate that the resulting loss of the aforementioned A δ and C fibres leads to a significant loss in pain perception.¹⁰

CLINICAL IMPLICATIONS

With their inability to experience pain, patients with HSAN V are more vulnerable to wounds, injuries, and self-mutilating behaviour, which may result in autoamputation in extreme cases.⁶ Additionally, the absence of deep pain perception—the feeling of pain from injuries to bones, ligaments, or muscles—can lead to fractures, bone necrosis, osteochondritis, and osteomyelitis, ultimately necessitating neuropathic arthroplasty.¹⁰ Less common symptoms include anhidrosis (the inability to sweat), fevers, and mental retardation. This latter group of symptoms occurs primarily in cases that symptomatically overlap with HSAN IV, otherwise known as CIP with anhidrosis.¹¹

Current treatments for CIP are largely supportive and oriented to prevent self-mutilation or to manage orthopedic problems. Examples may include continual monitoring for injuries, special footwear for orthopedic complications, and surgery. However, many difficulties arise when treating CIP patients. For instance, due to their absence of pain awareness, they lack incentive to wear braces or other orthoses.¹² Despite the severity of the disease, there is no effective standard for CIP treatment, in part due to the limited amount of research that has been conducted regarding the condition. Additionally, the poor delineation between HSAN IV and HSAN V has further complicated the diagnosis and treatment of each condition.³

FUTURF RESEARCH

In order to achieve a more thorough understanding of NGF/proNGF receptor distribution HSAN V is needed, as existing mouse models lack validity. Compared to humans, current NGF knockout mice exhibit more severe phenotypes, as demonstrated by the massive loss of sensory fibres and the higher risk of death within a few weeks of birth.^{13,14} A more accurate model for testing NGF function is crucial to a better understanding of CIP and its consequences.6

Despite our general aversion to pain, the sensation of pain is a basic physiological necessity. Those with CIP are deprived of the sensory input necessary to navigating the dangers of their environment, leaving them unable to identify-let alone avoid-these threats. With an improved *in vivo* model, research may further inform the development of pharmacological treatments or genetic therapies as early interventions for CIP, ultimately helping to prevent or better manage its harmful and long-lasting effects.

REVIEWED BY DR. ERIC SEIDLITZ

Dr. Seidlitz is both a researcher and educator, with specific interest in the fields of pain, novel cancer therapeutics, and drug development. He completed his Doctorate in Physiology and Pharmacology at McMaster University, where he is now a faculty member.

REFERENCES

- um Al, Bautista DM, Scherrer G, Julius D. Cellular and ular mechanisms of pain. *Cell*. 2009;139(2):267–84. dottir E, Carlsson A, Minde J, Toolanen G, Svensson Q, s G. A mutation in the nerve growth factor beta gene causes loss of pain perception. *Human Molecular* Ge-
- 5. 2004;15(8):/99-805. alho OP, Thornton GK, Hertecant J, Houlden H, Nicholas ox JJ. A novel NGF mutation clarifies the molecular mech-n and extends the phenotypic spectrum of the HSANS opathy. *Journal of Medical Genetics*. 2011;48(2):131-5. er R, Doherty C. Pathophysiology of Pain in the Pe-ral Nervous System. In: Tubbs RS, Rizk E, Shoja MM, as M, Barbaro N, Spinner RI, editors. *Nerves and Nerve* es. San Diego: Academic Press; 2015, p. 3-22. Available https://www.sciencedirect.com/science/article/pii/ 0128026533000506.
- Entry 162030 Nerve Growth Factor NGF [Inter-mim.org, Available from: https://www.omim.org/en-

- try/162030 [Accessed 9th February 2018]. Capsoni S. From genes to pain: nerve growth factor and he-reditary sensory and autonomic neuropathy type V. European Journal of Neuroscience. 2014;39(5):392-400. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences. 2011;36(6):320-8.
- ciences. 2011;36(6):320-8. ang J. Zhu C. Li ZH, Liu XY, Sun SK, Zhang T et al. In f the spinal astrocytic INK/MCP-1 pathway activatio stes with the analgesic effects of tanshinone IIA sulf europathic pain. *Journal of Neuroinflammation*. 2015; Constanti S. Ceri, M. Ber
- soni S, Covaceuszach S, Marinelli S, Ceci M, Bernardo A, ghetti L et al. Taking pain out of NGF: a "painless" NGF tant, linked to hereditary sensory autonomic neuropathy 2. With full neurotrophic activity. *Public Library of Science* 2. 2011;6(2):e17321.
 - de J, Toolanen G, Andersson T, Nennesmo I, Remahl IN, Isson O et al. Familial insensitivity to pain (HSAN V) and a
- on in the NGFB gene. A neurophysiological and patho study. *Muscle & Nerve*. 2004;30(6):752-60. F. Hereditary sensory and autonomic neuropathie EI, UpToDate. Available from: https://www.uptodate
- et]. UpToDate. Available fro ontents/hereditary-sensory-Accessed 9th February 2018] ar R, Kalaskar A. Hereditary bathy type V: Report of a rare titistry. 2015;6(1):103–6.
- - C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S Il MP. Mice lacking nerve growth factor display peri ss of sensory and sympathetic neurons yet develop rebrain cholinergic neurons. *Cell*. 1994;76(6):1001-
- ison E, Kuma R, Norberg A, Minde J, Holmberg M. N wth factor R221W responsible for insensitivity to p ectively processed and accumulates as proNGF. *Neuro* of *Disease*. 2009;35(2):221–8.