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research insight
sual acuity with no particular adverse cell pro-
liferation or rejection when ESC-derived reti-
nal pigment epithelial cells were transplanted 
into the subretinal space to treat age-related 
macular degeneration.30 However, ESC thera-
py is limited by concerns regarding long-term 
safety and graft survival.

As an alternative, investigators have employed 
adult stem cell therapy (ASCT).30 ASCT 
requires ex vivo manipulations that involve 
isolating, enriching, identifying, and grow-
ing adult stem cells before they can be used 
to replace any cells of the dysfunctional or-
gans via transplantation and cell injection.30 
ASCT aims to allow normal, healthy cells to 
differentiate into functional cells in the target 
diseased tissues.30,32

Specifically, DSCs can be integrated into 
ASCT to regenerate and restore ocular tissues. 
This is because DSCs are derived from cra-
nial NCC and may possess similar properties 
to neural crest progenitor cells that give rise 
to many structures of the anterior segment 
of the eye.30,32 In fact, the study showed that 
when undifferentiated, immature human den-
tal pulp stem cells (DPSCs) were transplanted 
into an animal model of limbal stem cell de-
ficiency, it resulted in a reconstructed corneal 
epithelium, reduction in neovascularization, 
and clear cornea. This animal model involves 
extensive corneal damage and permanent vi-
sual impairment, and is often used to study 
the effects of stem cells in healing damaged 
tissues. This particular model and its limbal 
stem cell deficiency manifests as the lack of 
repopulation of corneal epithelium and is vi-
able for testing the healing capacity of the 
DSCs. These results clearly demonstrate their 
capacity to replace limbal stem cells and re-
store the cornea.30-32 Furthermore, the study 
showed that DPSCs may serve as an abun-
dant source of retinal-like stem cells with the 
ability to differentiate into retinal neurons 
and photoreceptors.30

Conclusion

Continued research on ASD has allowed for 
identification of multiple genes associated 
with the condition, several of which include 
Pitx2, Foxc1, Tfap2b. It has been found that 
these genes do not work independently of 
one another. Rather, they regulate or affect 
one another in the process of POM specifica-
tion into anterior segment tissues such as the 
components of the corneal layers and struc-
tures of the iridocorneal angle. Research has 
also suggested the possibility of sequential 
formation of anterior segment tissues. This 
was clearly demonstrated in the lens abla-
tion experiment, in which the lens allowed for 
subsequent specification of the POM into the 
anterior structures through inductive signal-
ling. This review paper aimed to emphasize 
the importance of proper embryonic develop-
ment of the anterior structures and the pos-
sible complications that can arise as a result 
of its improper development. These complica-
tions include ARS, subcapsular cataracts, and 
glaucoma. Finally, a potential treatment using 
adult stem cells, specifically dental stem cells, 
has highlighted the possibility of regenerating 
the damaged cornea frequently resulting from 
ASD. Future steps include further investiga-
tion of the AP-2β NCC KO mouse mutants 
and determination of whether knockouts at 
different time points during embryonic de-
velopment yield different clinical manifesta-
tions. Regenerative medicine, such as the use 
of DSCs, should be further validated and ad-
vanced to human trials in order to treat the 
millions affected by ASD. 
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