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INTRODUCTION
Major depressive disorder (MDD) is a highly prevalent disorder 
characterized by depressed mood, diminished interests, 
impaired cognitive function, disturbed sleep, and changes in 
appetite causing clinically significant distress or impairment.1 
Affecting 1 in 6 adults, it is estimated by the Global Burden 
of Disease Consortium to be the fourth leading contributor to 
global disease burden in individuals aged 10 to 24, and sixth in 
those aged 25 to 49.2

Although methods such as psychotherapy, electroconvulsive 
therapy (ECT), and pharmacotherapy are commonly used to 
treat depression, these approaches are effective in only 30-50% 
of patients.3 This is partially due to the broad and heterogeneous 
nature of depression diagnoses: the DSM-5 does not break down 
MDD into more narrowly defined disease entities with specific 
biologies.1 This impedes the personalization of treatment on a 
patient-specific level.4 Instead, effective treatment is dependent 
on long-term interactions, where clinicians begin with 
recommendations based on broader symptom classifications 
before personalizing the treatment over time through trial and 
error.3 Although this approach may eventually prove effective 
for patients, it prolongs disease complications and consumes 
significantly more resources compared to targeted approaches.2 
This review aims to investigate the potential of the application of 
machine learning to neuroimaging data to predict individualized 
responses to MDD treatment, while addressing specific and 
systemic limitations of current research.

MACHINE LEARNING
Machine learning (ML) is a branch of artificial intelligence 
that uses an algorithmic and data-based approach to develop 
machines to perform tasks without explicit programming. 
In ML models, machines are “trained” using a bottom-up 
approach, where they are given examples from which they 
learn, automatically improving as further experience is gained 
to develop a more generalizable algorithm.5 This means that 
ML can develop models capable of novel and generalizable 
predictions; this ability has led ML to gain significant traction in 

recent decades, with applications ranging from self-driving cars 
to medical diagnoses.5 

When it comes to MDD treatment, ML provides two key 
advantages. First, it allows for predictions at the level of 
the individual rather than solely the identification of gross 
differences on a group level.6 As such, it has high translational 
potential to a clinical setting. Second, its multivariate nature 
makes it more sensitive to subtle, spatially-distributed brain 
alterations.6 This enables it to detect patterns in massively 
multivariate data, such as magnetic resonance imaging (MRI), 
that are far too complicated for humans to interpret. These 
patterns can be used to predict whether a specific treatment 
will be successful in decreasing depressive symptoms for a given 
patient. Models commonly focus on predicting the success of 
pharmacotherapy and ECT, while significantly less research has 
applied ML predictions to cognitive behavioral therapy, despite 
it being a common treatment for MDD.7

The machine learning pipeline typically begins with data 
preprocessing, which prepares and refines the raw data to 
make it more suitable for the machine learning model. This 
generally entails the alignment and normalization of image 
data, and the filtering-out of noise. However, there is significant 
variation in the tools used to perform these steps; some studies 
have also included further preprocessing steps, such as feature 
selection, where only features that are expected to be meaningful 
for prediction are included in the model.8 Although these 
differences are not largely significant, they highlight the lack of 
a standardized and validated approach to preprocessing imaging 
data that may be necessary before clinical application is possible.
Following preprocessing, models are trained using training data 
to build an algorithm to make predictions about the success of the 
drug or intervention. One method of analyzing neuroimaging 
data is an algorithm called a support vector machine (SVM).6 
SVMs seek to define a “hyperplane” in high-dimensional space, 
which is a decision boundary that separates data into discrete 
categories, namely whether a depression treatment is successful 
or not (see Fig. 1). It should be noted that different studies vary 
in their criteria for a “successful” intervention, with some using 
symptom reduction measured on the Hamilton Depression 
Rating Scale (HRSD) and others defining success as complete 
remission.8,9 While this makes it more difficult to compare 
studies, these different definitions of success allow for greater 
application over multiple contexts, depending on the history and 
severity of MDD a patient experiences. Once a model is trained, 
it can be used to make predictions on new data. 
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Figure 1: A two-dimensional support vector machine. SVM is 
an ML algorithm that finds a hyperplane in N-dimensional space 
(where each dimension corresponds to a feature of the dataset) 
that most successfully classifies cases, while also maximizing 
the margin between the data points closest to the hyperplane 
(support vectors).3

PREDICTIVE PERFORMANCE 
The performance of an ML model is commonly evaluated 
by first training the model using a training set, after which 
the generated algorithm is applied to a test set to analyze 
performance by comparing the prediction to the correct label. 
Specifically, most studies in this area use leave-one-out cross-
validation, a method where a single participant from both 
responder and non-responder groups is excluded to use as a test 
set, while the model is trained on the remaining patients.7 This 
process is repeated with different participants being excluded at 
each iteration, until every participant is excluded once. While 
this cross-validation approach produces high-variability and 
potentially biased estimations, other approaches are currently 
difficult to implement due to small sample sizes.3

Performance can be evaluated with a range of metrics, but the 
most commonly reported metrics are accuracy (the proportion of 
correctly predicted cases), sensitivity (the proportion of correctly 
predicted responders out of all responders), and specificity (the 
proportion of correctly predicted non-responders out of all 
non-responders). Model accuracy varies significantly between 
investigations, ranging from 62-89%.10,11 This variability is partly 
due to objective model performance, but can also be attributed to 
different methodologies for sampling, treatment, imaging, and 
analysis. The average sensitivity and specificity was estimated to 
be 77% and 79% respectively in a 2021 meta-analysis conducted 
by Cohen et al., which demonstrates that models perform fairly 
successfully overall.7 There were no significant differences 
resulting from imaging modality: structural and functional MRI 
studies yielded similar sensitivities and specificities. However, 
the predictive accuracy of ECT interventions has generally been 
found to be higher than that of pharmacotherapy.7

Studies have had widely varying results for brain regions with 
high predictive importance for MDD treatment. Costafreda et al. 
found that increased grey matter density in the cingulate gyrus 
(CgC) predicted an increased probability of clinical remission 
in response to fluoxetine.8 These findings agree with an earlier 
functional MRI study by Marquand et al., which also identified 

the CgC as a biomarker for successful antidepressant response.12 
Grieve et al. conducted a subsequent study using different 
drugs, yet also found that the CgC predicted non-remitting 
patients.13 This raises a potential issue: current algorithms could 
be predicting the overall success of antidepressant treatments in 
general, rather than being drug-specific. While such predictions 
may still be helpful, it detracts from their clinical utility where 
deciding between multiple potential drugs is often required. 
Many other regions of interest have been identified, such as the 
amygdala and the hippocampus, with some studies identifying 
as many as 25 regions of interest.7,14 However, this varies 
significantly between publications, as regions of high predictive 
importance identified in some studies have been completely 
excluded from others.11,15 Overall, there is no clear agreement 
in the literature that suggests a single region of interest as a 
potential biomarker.

LIMITATIONS
While ML seems like a promising technology to assist with 
the treatment of MDD, it has many limitations that should 
be addressed. Firstly, training and testing data are often 
unrepresentative of the actual populations to which ML will 
be applied. Most current studies seek to obtain a pure estimate 
of the population mean without influence from other factors 
like comorbidities or medication effects, which often serve as 
exclusion criteria. In the general population, however, MDD 
cases are often comorbid with other psychiatric disorders.16 As 
such, a model that displays high accuracy within a single study 
may not necessarily produce successful results in larger, more 
heterogeneous populations. In fact, the accuracy of these models 
trend downwards with increasing sample size, despite the fact that 
ML models generally improve with more data.17 This inflation of 
accuracy may be due to overfitting, where small sample sizes can 
cause the model to capture dynamics that are specific to training 
data, but consequently do not generalize well to new data. As 
such, before clinical application is possible, the generalizability 
of ML in broader samples must be proven, especially in MDD-
afflicted individuals with comorbid conditions that may 
complicate prediction. Dwyer and colleagues have proposed a 
validation hierarchy to achieve greater generalizability, where 
models can be gradually applied to more diverse selections 
of individuals, such as leave-site-out cross validation (where 
models are trained in one site and tested in another).3

Another significant limitation with current research is that 
investigators often use a classification approach. This approach 
considers the success of a treatment as a discrete variable, 
separating patients into responder and non-responder groups 
based on arbitrarily defined boundaries, such as a 50% reduction 
in HRSD score.9 However, efficacy is a continuous variable, with 
varying degrees of symptom reduction: most non-ML studies 
of treatment efficacy do indeed report results continuously.18 

As such, a machine learning algorithm using a classification 
approach will be fundamentally constrained by being an 
inaccurate representation of the true nature of treatment. 
Therefore, it could be worth investigating a regression approach, 
where predictions are made on a continuous scale that estimates 
the degree of success of a treatment. 

Finally, there are several challenges that must be addressed 
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before ML can be used in clinical settings. One issue is that models created 
by ML are often difficult to interpret, meaning that it is hard to understand 
how variables are combined to make predictions on both a computational 
and biological level. In the context of patient care, this lack of transparency 
could potentially undermine trust in this technology by both clinicians 
and patients, preventing adoption. However, improvement in this area 
reduces accuracy, given that the best performing models tend to be the 
least explainable, and vice versa.19 ML will also likely create ethical issues 
of accountability: if an ML model makes an incorrect prediction, it is 
difficult to determine where culpability lies, creating further complications 
for existing legal and regulatory systems that address medical malpractice. 
Finally, there are a range of practical issues that also limit the usefulness 
of ML. These include a lack of clinician experience and training in using 
ML models, restricted access to neuroimaging, and the high time and 
computational demand required to implement this technology on a larger 
scale.

CONCLUSION
The potential of ML to predict treatment response on an individual level 
could help rectify the current lack of targeted treatment methodologies and 
significantly improve patient care. However, many limitations still prevent 
clinical implementation. Future research should focus on improving 
generalizability, as successful validation across multiple sites or across 
different investigations would greatly improve the value of ML in real-
world applications. Alongside this, researchers should also consider issues 
of how to make this technology readily available for clinician use, while 
enhancing transparency to encourage patient adoption.
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