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CRITICAL REVIEW

INTRODUCTION
Engineering T-cells became commonplace in the mid-2000s, 
with first generation chimeric antigen receptors (CARs) de-
veloped in 1993.¹ Currently approved CAR T-cell therapies are 
developed from the patient’s own T-cells.² These cells are engi-
neered to express specific T-cell receptors targeted to an antigen 
on the surface of cancerous cells, allowing the immune system 
to identify previously unrecognizable immunomodulatory can-
cer cells.2,3 CAR T-cells most commonly use a single-chain vari-
able fragment (scFv) on the CAR to bind to cancerous antigens.⁴ 
When this binding occurs, a signal is generated and transmitted 
through the CAR cytoplasmic domain, consisting of costimula-
tory and signalling domains, activating the CAR T-cell.² Once 
activated, the T-cells initiate cytotoxic functions which can yield 
cancer cell elimination.²

Currently, the United States Food and Drug Administration 
(FDA) has approved CAR T-cell therapies for the treatment of 
relapsed/refractory B-cell acute lymphoblastic leukemia (R/R 
B-ALL) and lymphomas in children and young adults.¹ Al-
though this treatment has shown promising results, the proce-
dure has been shown to cause adverse effects. The objective of 
this review is to present the benefits, challenges, and variations 
in success rates across demographics of patients receiving CAR 
T-cell therapies.

ADVANTAGES OF CAR T-CELL THERAPY
Inducing Complete Remission 

CAR T-cell therapies have shown great promise for treating re-
lapsed/refractory hematopoietic cancers by inducing complete 
remission in patients for whom chemotherapy is no longer
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effective. There are two main CAR T-cell therapies approved by 
the FDA: Yescarta and Kymriah.⁵ The CAR T-cells used in these 
treatments target the CD19 antigen found on B-cell cancers like 
ALL and B-cell lymphomas. ⁶ In a clinical trial, Kymriah was ad-
ministered to 93 patients with refractory B-cell lymphomas, with 
52% of patients responding to the treatment and 40% achieving 
complete remission.⁷ In a clinical trial to test the efficacy of Yes-
carta, 101 patients with a type of refractory lymphoma received 
an infusion.8 The overall response rate after one year was 82%, 
out of which 58% achieved complete remission.8 These studies 
demonstrate the efficacy and potential for future CAR T-cell 
therapies. 

Reducing Off-Tumor Toxicities 
One of the challenges in developing efficient cancer treatments 
is reducing toxicity to non-cancerous cells.9 Many chemothera-
peutic drugs target highly active pathways involved in the cell 
cycle that are not specific to cancer cells, thereby killing healthy 
cells and worsening the patient’s prognosis.¹⁰ In comparison, 
CAR T-cell therapies offer a degree of specificity that is absent 
from conventional treatments. CAR T-cells can be constructed 
using various scFv domains to recognize a particular antigen on 
cancerous cells, such as CD19 found on B-cell cancers.¹1 Thus, 
CAR T-cell therapy has potential to significantly reduce off-tu-
mor toxicities. 

However, off-tumour toxicities are still commonplace in patients 
who receive CAR T-cell therapies, which requires additional 
treatments to manage associated adverse effects. One common 
example seen with CD19 CAR T-cell therapy is the ablation of 
B-cells, which renders the patient immunodeficient.12 This oc-
curs because the CD19 antigen found on hematological cancers 
are also found on normal B-cells.6 These patients can be treated 
through periodic administration of intravenous immunoglobu-
lins to replace the antibodies no longer being produced. Nev-
ertheless, there are other off-tumor toxicities for which further 
research is needed to determine the mechanisms involved and 
the appropriate treatments.12 

Variability of CAR T-Cells 
Depending on the therapeutic needs of patients, CAR T-cells 
can be altered at the scFv and the cytoplasmic domain to modu-
late affinity, persistence, and proliferation.4 Using mouse tumor 
models, Liu et al. observed that CAR T-cells constructed using 
lower affinity scFvs had fewer off-tumour responses, increasing 
their therapeutic index.13 Studies suggest that high affinity scFvs 
may hinder CAR T-cells’ ability to discriminate between cancer 
cells and healthy cells.13 CD19 CAR T-cells with higher affinity 
scFvs for their target antigen have greater anti-tumor activity.12

ABSTRACT
Chimeric antigen receptor (CAR) T-cell therapy is a form 
of immunotherapy that has shown potential for inducing 
complete remission in relapsed/refractory hematopoietic 
cancers. Depending on the patient’s therapeutic needs, 
CAR T-cells may be constructed using different cytoplas-
mic and extracellular domains to alter their affinity, persis-
tence, and proliferation. While the therapy holds promise, 
the conventional use of CAR T-cell therapy is limited by 
the occurrence of side effects, substantial rates of relapse, 
and manufacturing logistics. The objective of this review 
is to discuss the potential of CAR T-cell therapies, as well 
as patient characteristics which may influence its efficacy.
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Additionally, in a study comparing the functionality and persis-
tence of CAR T-cell cytoplasmic domains, Zhao et al. conclud-
ed that CAR T-cells with a CD28 cytoplasmic domain expand 
more efficiently than those with a 4-1BB domain, leading to 
more rapid cytotoxic effects.¹⁴,¹⁵ However, 4-1BB CAR T-cells 
demonstrate a higher persistence, generating long-term tumor 
immunity and reducing the risk of cancer relapse.¹³,¹⁶ These 
two instances highlight the complex interrelationships at play in 
cancer immunology, complicating the development of an effica-
cious CAR T-cell therapy.¹⁷ 

SETBACKS IN CAR T-CELL THERAPY
Cytokine Release Syndrome 

A primary adverse effect of CAR T-cell therapies is cytokine 
release syndrome (CRS), marked by elevated serum cytokine 
levels.¹⁵ Cytokines are small proteins released by immune cells 
acting as chemical messengers.¹⁸ Following their interactions 
with cancerous cells, activated CAR T-cells release pro-inflam-
matory cytokines.¹⁵, ¹⁹ Symptoms of CRS include fever, myalgia, 
hypotension, and hypoxia, with severe cases resulting in hemo-
dynamic compromise, capillary leak, arrhythmias, renal fail-
ure, and various other complications.¹⁹ These life-threatening 
symptoms are also typically seen in early onset CRS, occurring 
within three days of CAR T-cell infusion.¹⁵ Studies done on B-
cell malignancies have shown that factors such as a high bone 
marrow tumor burden and higher CAR T-cell dosages pose a 
greater risk for developing severe CRS through rapid CAR T-
cell expansion.²⁰,²¹

The incidence and severity of adverse effects can be greatly di-
minished with knowledge of CRS management and early inter-
vention. A recent study suggests that lymphoma patients over 
18 years of age display a lower incidence of severe CRS com-
pared to a population under 18 years of age.²² In contrast, an-
other study suggests the opposite pattern in patients with R/R 
ALL, where higher rates of CRS have been reported in the adult 
population.²³ These findings suggest a variance in the extent of 
CRS observed within different cancer types and a need for fur-
ther research to clarify the relationship between age and CRS 
severity.

Immune Effector Cell-associated Neurotoxicity Syndrome
Immune Effector Cell-Associated Neurotoxicity Syndrome 
(ICANS), a form of neurotoxicity, is the second most 
prominent adverse effect associated with CAR T-cell
therapy.²⁴ ICANS presents as an encephalopathy, 
resulting in confusion, aphasia, cerebral edema, 
and motor weakness, potentially leading to 
comas, seizures, and death.⁸ The occurrence
of ICANS associated with CD19 CAR T-cell 
therapy varies between 23-67% among 

patients with lymphoma, and between 
40-62% in patients with leukemia.¹⁵ As 
CAR T-cell therapy is a relatively novel immuno-
therapy, the mechanism of ICANS development is 
currently not well understood.²⁵ However, there 
are two prevailing theories regarding its develop-
ment. The first pertains to the disruption of the 
blood-brain barrier (BBB). Patients who develop 
ICANS have high levels of pro-inflammatory cy-
tokines known to interact with endothelial cells of 
the BBB, which protects the brain from circulat-
ing toxins and pathogens.²⁶-²⁸ Increased cytokine 
levels may lead to BBB permeabilization, allowing 
cytokines to enter the brain.²⁷ The second theory 
is related to the expression of CD19 on brain cells. 
In a study by Parker et al., a population of healthy 
cells in the brain were found to express 
CD19.²⁹ Since these cells express the same 
target antigen as the cancerous cells, CAR 
T-cells may mistakenly target or 
damage them.²⁹
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CONCLUSION
At this stage, CAR T-cell therapy can be considered effective 
for inducing complete remission in hematopoietic cancer pa-
tients. Given that CRS and ICANS are heightened in patients 
with higher disease burden and associated comorbidities, CAR 
T-cell therapy administration should consider the patient’s own 
treatment needs. Additional research is needed to better un-
derstand the mechanisms and management of multiple off-tu-
mor toxicities. Reducing their incidence may be accomplished 
through alterations to individual CAR T-cell designs. Further-
more, there are a number of handling and economic challenges 
associated with CAR T-cell therapies. These therapies offer a 
promising future for those afflicted with R/R ALL and lympho-
mas, but its cost and patient safety concerns restrict its imple-
mentation in clinical settings.

CAR T-cell designs and dosages may also influence the risk of 
developing ICANS. CAR T-cells with a CD28 cytoplasmic do-
main have greater proliferation, but lead to a greater incidence 
of ICANS.¹⁵,³¹ Additionally, higher doses of CAR T-cells have 
been associated with an increased risk of neurotoxicity.²⁷,³⁰ Fur-
ther research on ICANS may help identify high-risk patients 
preemptively to allow for appropriate adjustments in CAR T-
cell design and dosage.³¹

Treatment Logistics 
Financial costs, storage, handling, and timeline of treatment all 
hinder the widespread clinical administration of CAR T-cell 
therapy. There is a concern regarding the financial burden that 
the treatment imposes on patients.¹⁵ For patients with ALL, an 
infusion of Kymriah is over $200,000 USD more expensive than 
the average 100-day hematopoietic stem cell transplantation 
treatment (HSCT).³²,³³ Nonetheless, it is important to recognize 
that, unlike Kymriah treatments, autologous HSCT is not cura-
tive for ALL. In a 2014 trial conducted by Maude et al., 63% (n 
= 30) of patients treated with Kymriah remained in remission 
during a follow-up period of 24 months.³⁴ As a result of this cost 
barrier, this treatment is not financially accessible to the general 
population. This furthers an ongoing economic debate regard-
ing the cost-effectiveness of CAR T-cell therapies, especially due 
to its novelty compared to conventional cancer treatments.³²

Moreover, the production of CAR T-cells is resource intensive, 
requiring genetic manipulation, quality control, and final cryo-
preservation of the expanded T-cell product prior to infusion.¹⁵ 
Additional equipment, training, and infrastructure are also 
needed for the administration and post-treatment monitoring 
of patients. Future efforts should address the implementation in 
impoverished communities and hospital systems with minimal 
funding.

CAR T-Cell Relapse 
There are two types of relapses that occur with CAR T-cell ther-
apy. Negative CAR T-cell relapse occurs due to the loss of the 
target antigen on the tumor (e.g. CD19), allowing cancer cells 
to evade CAR T-cells.³⁵ Positive CAR T-cell relapse occurs due 
to poor persistence and proliferation of CAR T-cells despite the 
tumor expressing the target antigen.5 With further use of CAR 
T-cells, relapse has become an apparent obstacle, with up to 50% 
of patients relapsing within one year.³⁶ 

In a clinical study, CD19 CAR T-cells were administered to pa-
tients with R/R ALL, with 45% of those who achieved complete 
remission relapsing.³⁷ While positive relapse accounted for 6% 
of cases, negative relapse was 39%, making it a primary research 
focus.³⁷ In the case of ALL, potential treatment options include 
targeting the expression of CD22 on the cancer cells rather than 
CD19, and developing CAR T-cells with receptors able to target 
both CD19 and CD22.

Dr. Jonathan Bramson is a Professor in the Department of Pa-
thology and Molecular Medicine as well as the Vice Dean of 
Research in the Faculty of Health Sciences at McMaster Univer-
sity. His research focuses on the development of immunological 
strategies that target cancer, using methods such as synthetic 
biology to direct T-cells against tumor targets.
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