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CARs on the road: Who gets a seat?
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ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is a form
of immunotherapy that has shown potential for inducing
complete remission in relapsed/refractory hematopoietic
cancers. Depending on the patients therapeutic needs,
CAR T-cells may be constructed using different cytoplas-
mic and extracellular domains to alter their affinity, persis-
tence, and proliferation. While the therapy holds promise,
the conventional use of CAR T-cell therapy is limited by
the occurrence of side effects, substantial rates of relapse,
and manufacturing logistics. The objective of this review
is to discuss the potential of CAR T-cell therapies, as well
as patient characteristics which may influence its efficacy.

INTRODUCTION

Engineering T-cells became commonplace in the mid-2000s,
with first generation chimeric antigen receptors (CARs) de-
veloped in 1993.' Currently approved CAR T-cell therapies are
developed from the patient’s own T-cells.” These cells are engi-
neered to express specific T-cell receptors targeted to an antigen
on the surface of cancerous cells, allowing the immune system
to identify previously unrecognizable immunomodulatory can-
cer cells.>® CAR T-cells most commonly use a single-chain vari-
able fragment (scFv) on the CAR to bind to cancerous antigens.*
When this binding occurs, a signal is generated and transmitted
through the CAR cytoplasmic domain, consisting of costimula-
tory and signalling domains, activating the CAR T-cell.> Once
activated, the T-cells initiate cytotoxic functions which can yield
cancer cell elimination.

Currently, the United States Food and Drug Administration
(FDA) has approved CAR T-cell therapies for the treatment of
relapsed/refractory B-cell acute lymphoblastic leukemia (R/R
B-ALL) and lymphomas in children and young adults." Al-
though this treatment has shown promising results, the proce-
dure has been shown to cause adverse effects. The objective of
this review is to present the benefits, challenges, and variations
in success rates across demographics of patients receiving CAR
T-cell therapies.

ADVANTAGES OF CAR T-CELL THERAPY
Inducing Complete Remission
CAR T-cell therapies have shown great promise for treating re-
lapsed/refractory hematopoietic cancers by inducing complete
remission in patients for whom chemotherapy is no longer
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effective. There are two main CAR T-cell therapies approved by
the FDA: Yescarta and Kymriah.® The CAR T-cells used in these
treatments target the CD19 antigen found on B-cell cancers like
ALL and B-cell lymphomas. ° In a clinical trial, Kymriah was ad-
ministered to 93 patients with refractory B-cell lymphomas, with
52% of patients responding to the treatment and 40% achieving
complete remission.” In a clinical trial to test the efficacy of Yes-
carta, 101 patients with a type of refractory lymphoma received
an infusion.® The overall response rate after one year was 82%,
out of which 58% achieved complete remission.® These studies
demonstrate the efficacy and potential for future CAR T-cell
therapies.

Reducing Off-Tumor Toxicities

One of the challenges in developing efficient cancer treatments
is reducing toxicity to non-cancerous cells.” Many chemothera-
peutic drugs target highly active pathways involved in the cell
cycle that are not specific to cancer cells, thereby killing healthy
cells and worsening the patient’s prognosis.'® In comparison,
CAR T-cell therapies offer a degree of specificity that is absent
from conventional treatments. CAR T-cells can be constructed
using various scFv domains to recognize a particular antigen on
cancerous cells, such as CD19 found on B-cell cancers.'! Thus,
CAR T-cell therapy has potential to significantly reduce off-tu-
mor toxicities.

However, off-tumour toxicities are still commonplace in patients
who receive CAR T-cell therapies, which requires additional

curs because the CD19 antigen found on hematological ¢ancers
are also found on normal B-cells.® These patients can be treated
through periodic administration of intravenous immunoglobu-
lins to replace the antibodies no longer being produced. Nev-
ertheless, there are other off-tumor toxicities for which further
research is needed to determine the mechanisms involved and
the appropriate treatments.*?

Variability of CAR T-Cells

Depending on the therapeutic needs of patients, CAR T-cells
can be altered at the scFv and the cytoplasmic domain to modu-
late affinity, persistence, and proliferation.* Using mouse tumor
models, Liu et al. observed that CAR T-cells constructed using
lower affinity scFvs had fewer oft-tumour responses, increasing
their therapeutic index.'* Studies suggest that high affinity scFvs
may hinder CAR T-cells ability to discriminate between cancer
cells and healthy cells."> CD19 CAR T-cells with higher affinity
scFvs for their target antigen have greater anti-tumor activity.'?
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Additionally, in a study comparing the functionality and persis-
tence of CAR T-cell cytoplasmic domains, Zhao et al. conclud-
ed that CAR T-cells with a CD28 cytoplasmic domain expand
more efficiently than those with a 4-1BB domain, leading to
more rapid cytotoxic effects.'*'* However, 4-1BB CAR T-cells
demonstrate a higher persistence, generating long-term tumor
immunity and reducing the risk of cancer relapse.'>'® These
two instances highlight the complex interrelationships at play in
cancer immunology, complicating the development of an effica-
cious CAR T-cell therapy.'”

SETBACKS IN CAR T-CELL THERAPY

Cytokine Release Syndrome
A primary adverse effect of CAR T-cell therapies is cytokine
release syndrome (CRS), marked by elevated serum cytokine
levels.'® Cytokines are small proteins released by immune cells
acting as chemical messengers.'® Following their interactions
with cancerous cells, activated CAR T-cells release pro-inflam-
matory cytokines.'>'” Symptoms of CRS include fever, myalgia,
hypotension, and hypoxia, with severe cases resulting in hemo-
dynamic compromise, capillary leak, arrhythmias, renal fail-
ure, and various other complications.'” These life-threatening
symptoms are also typically seen in early onset CRS, occurring
within three days of CAR T-cell infusion."® Studies done on B-
cell malignancies have shown that factors such as a high bone
marrow tumor burden and higher CAR T-cell dosages pose a
greater risk for developing severe CRS through rapid CAR T-
cell expansion.”!

The incidence and severity of adverse effects can be greatly di-
minished with knowledge of CRS management and early inter-
vention. A recent study suggests that lymphoma patients over
18 years of age display a lower incidence of severe CRS com-
pared to a population under 18 years of age.”” In contrast, an-
other study suggests the opposite pattern in patients with R/R
ALL, where higher rates of CRS have been reported in the adult
population.?® These findings suggest a variance in the extent of
CRS observed within different cancer types and a need for fur-
ther research to clarify the relationship between age and CRS
severity.

Immune Effector Cell-associated Neurotoxicity Syndrome
Immune Effector Cell-Associated Neurotoxicity Syndrome
(ICANS), a form of neurotoxicity, is the second most
prominent adverse effect associated with CAR T-cell
therapy.** ICANS presents as an encephalopathy,
resulting in confusion, aphasia, cerebral edema,
and motor weakness, potentially leading to
comas, seizures, and death.® The occurrence

of ICANS associated with CD19 CAR T-cell
therapy varies between 23-67% among

patients with lymphoma, and between

40-62% in patients with leukemia.'® As

CAR T-cell therapy is a relatively novel immuno-
therapy, the mechanism of ICANS development is
currently not well understood.”® However, there
are two prevailing theories regarding its develop-
ment. The first pertains to the disruption of the
blood-brain barrier (BBB). Patients who develop
ICANS have high levels of pro-inflammatory cy-
tokines known to interact with endothelial cells of
the BBB, which protects the brain from circulat-
ing toxins and pathogens.?**® Increased cytokine
levels may lead to BBB permeabilization, allowing
cytokines to enter the brain.?” The second theory
is related to the expression of CD19 on brain cells.
In a study by Parker et al., a population of healthy
cells in the brain were found to express

CD19.”° Since these cells express the same

target antigen as the cancerous cells, CAR

T-cells may mistakenly target or
damage them.”
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CAR T-cell designs and dosages may also influence the risk of
developing ICANS. CAR T-cells with a CD28 cytoplasmic do-
main have greater proliferation, but lead to a greater incidence
of ICANS.'>*! Additionally, higher doses of CAR T-cells have
been associated with an increased risk of neurotoxicity.*”** Fur-
ther research on ICANS may help identify high-risk patients
preemptively to allow for appropriate adjustments in CAR T-
cell design and dosage.>*

Treatment Logistics

Financial costs, storage, handling, and timeline of treatment all
hinder the widespread clinical administration of CAR T-cell
therapy. There is a concern regarding the financial burden that
the treatment imposes on patients."® For patients with ALL, an
infusion of Kymriah is over $200,000 USD more expensive than
the average 100-day hematopoietic stem cell transplantation
treatment (HSCT).?*** Nonetheless, it is important to recognize
that, unlike Kymriah treatments, autologous HSCT is not cura-
tive for ALL. In a 2014 trial conducted by Maude et al., 63% (n
= 30) of patients treated with Kymriah remained in remission
during a follow-up period of 24 months.>* As a result of this cost
barrier, this treatment is not financially accessible to the general
population. This furthers an ongoing economic debate regard-
ing the cost-effectiveness of CAR T-cell therapies, especially due
to its novelty compared to conventional cancer treatments.*?

Moreover, the production of CAR T-cells is resource intensive,
requiring genetic manipulation, quality control, and final cryo-
preservation of the expanded T-cell product prior to infusion.*®
Additional equipment, training, and infrastructure are also
needed for the administration and post-treatment monitoring
of patients. Future efforts should address the implementation in
impoverished communities and hospital systems with minimal
funding.

CAR T-Cell Relapse

There are two types of relapses that occur with CAR T-cell ther-
apy. Negative CAR T-cell relapse occurs due to the loss of the
target antigen on the tumor (e.g. CD19), allowing cancer cells
to evade CAR T-cells.*® Positive CAR T-cell relapse occurs due
to poor persistence and proliferation of CAR T-cells despite the
tumor expressing the target antigen.” With further use of CAR
T-cells, relapse has become an apparent obstacle, with up to 50%
of patients relapsing within one year.*®

In a clinical study, CD19 CAR T-cells were administered to pa-
tients with R/R ALL, with 45% of those who achieved complete
remission relapsing.’” While positive relapse accounted for 6%
of cases, negative relapse was 39%, making it a primary research
focus.?” In the case of ALL, potential treatment options include
targeting the expression of CD22 on the cancer cells rather than
CD19, and developing CAR T-cells with receptors able to target
both CD19 and CD22.

CONCLUSION

At this stage, CAR T-cell therapy can be considered effective
for inducing complete remission in hematopoietic cancer pa-
tients. Given that CRS and ICANS are heightened in patients
with higher disease burden and associated comorbidities, CAR
T-cell therapy administration should consider the patient’s own
treatment needs. Additional research is needed to better un-
derstand the mechanisms and management of multiple off-tu-
mor toxicities. Reducing their incidence may be accomplished
through alterations to individual CAR T-cell designs. Further-
more, there are a number of handling and economic challenges
associated with CAR T-cell therapies. These therapies offer a
promising future for those afflicted with R/R ALL and lympho-
mas, but its cost and patient safety concerns restrict its imple-
mentation in clinical settings.
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