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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive 
genetic disorder that was first documented in the 
1930s by Dorothy Hansine Andersen.1 CF is most 
prominent in Caucasians, with other ethnic groups 
being affected at lower incidence rates. In Europe, 
the incidence of CF is one in every 2000-3000 
neonates, and in Canada nearly 4000 individuals 
are affected by the disorder.2,3 CF is caused by 
mutation to the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene which is 
located on chromosome 7 and encodes the anion 
channel, CFTR.2 This channel is found in secretory 
epithelial cells of various organs including the lung, 
pancreas, and reproductive tract.4 CFTR utilizes 
the energy of adenosine triphosphate (ATP) to 
allow for anions such as chloride and bicarbonate 
to flow down their electrochemical gradient.5 
Clinical symptoms of cystic fibrosis occur when a 
mutation alters the function of CFTR, 
preventing proper anion movement.

The classic clinical manifestation of 
CF is reduced airway mucociliary 
clearance, resulting in chronic 
sinopulmonary infection by pathogens 
including Pseudomonas aeruginosa and 
Burkholderia cepacia. These infections 
cause chronic coughing and sputum 
production resulting in airway 
obstruction.6 CF mutations also 
affect most exocrine glands, leading 
to impaired function of the pancreas, 
intestine, liver and bile duct.4 

In the past 50 years, there have been 
important developments in the 
treatments that improve the survival 
and quality of life of CF patients. 
These treatments have increased the 
median survival age in the United 

States from ~28 in 1991 to 36.8 in 
2011, and the hope is that it will be 
common for children born with CF 
in the 21st century to live beyond 50 
years of age.7 However, the purpose 
of many current CF treatments 
is only to alleviate symptoms. To 
improve survival of CF patients, future 
treatments must address the root cause 
of the disease: mutant CFTR. This 
review will explore CFTR modulators, 
specifically correctors and potentiators, 
which are molecules that can “repair” 
mutant CFTR.   

GENETICS OF CFTR

The CFTR gene, which spans approximately 
230 kb, was first identified in 1989. Since 
then, approximately 2000 variants have been 
identified.2,8 CFTR mutations can have differing 
effects on the CFTR protein and create varying 
phenotypes; however, these mutations usually fall 
in one of six classes (Table 1).9 The most common 
variant of CFTR is ΔF508, a Class II mutation 
which accounts for 66-70% of mutations.4 ΔF508 
is a deletion of the amino acid phenylalanine 
at position 508.  This deletion causes CFTR to 
become mislocalized in the endoplasmic reticulum, 
preventing the protein from attaining a mature 
conformation. Without this conformation, the 
ΔF508 CFTR protein rapidly degrades through 
an ubiquitin-proteasome pathway.10 
 
The product of the CFTR gene is a 1480-amino-
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CLASS OF 
MUTATION EFFECT ON PROTEIN CF PHENOTYPE

I Defective protein synthesis Severe phenotype from reduced 
functional CFTR 

II Abnormal trafficking from 
improper conformation

Severe phenotype from reduced 
functional CFTR 

III Defective regulation; 
prevention of ATP binding 

Severe phenotype from a 
normal amount of non-functional 
CFTR

IV Decreased conductance Mild phenotype from a normal 
amount of reduced functioning 
CFTR 

V Reduced synthesis and 
trafficking

Mild phenotype from a reduced 
amount of normal functioning 
CFTR

VI Decreased stability Severe phenotype from minimal 
functional CFTR

TABLE 1: Classification system 
for CFTR mutations
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acid-long polypeptide chain.11 The CFTR 
structure consists of two transmembrane domains  
(TMD1/2), two nucleotide binding domains 
(NBD1/2), and a regulatory domain with multiple 
phosphorylation sites (Figure 1). Channel 
opening is thought to occur when the regulatory 
domain of CFTR is phosphorylated by protein 
kinase A. After phosphorylation, ATP is recruited 
to NBD1 and NBD2. These domains dimerise 
(NBD1:NBD2) to open the channel pore. Upon 
subsequent ATP hydrolysis the NBDs dissociate, 
thereby forcing CFTR into a closed conformation. 
This entire process is called “gating.”2, 11 Knowledge 
regarding the structure of CFTR is important as 
it allows researchers to develop molecules that can 
be targeted to fix specific mutations. 

THE IMPORTANCE OF REPAIRING 
MUTANT CFTR

Treatments that can directly correct mutant CFTR 
and restore anion channel function are important 
as they directly prevent manifestations of CF. For 
example, a treatment that repairs CFTR would 
theoretically restore airway ciliary functioning, 
thereby effectively reducing or eliminating the 
probability of developing a pathogenic infection, a 
primary cause of respiratory failure in CF patients.11 
When pathogenic infections occur, the immune 
system releases neutrophils in an attempt to 
remove the infection. However, these neutrophils 
also indiscriminately destroy lung tissue such as 
the muscular and elastic portions of the bronchi, 
which creates potential for further infection and 
loss of lung function.12 Treatments that deal solely 
with the symptoms of pathogenic infection, like 
antibiotics, may not be able to prevent some of the 

initial lung damage. Additionally, these treatments 
do little to prevent symptoms from recurring and, 
in the case of infection, further reduction in lung 
function. Thus, it is important that future therapies 
directly target mutant CFTR to prevent CF 
symptoms from initially occurring.

THE IDEAL CFTR-REPAIRING DRUG

When repairing mutant CFTR, two important 
questions must be asked: How much CFTR needs 
to be repaired in order to see therapeutic benefits 
and how will such a treatment be administered? 
To address the former question, Zhang et al. 
looked to restore CFTR function in ΔF508 cells 
by delivering a normal copy of CFTR through 
use of a human parainfluenza virus vector. They 
demonstrated that to restore near-normal mucus 
transport, non-mutant CFTR must be delivered 
to approximately 25% of surface epithelial cells.13 
This figure is debated as some early trials of CFTR-
repairing drugs have shown that in vitro potency 
does not necessarily correlate with therapeutic 
benefits.14 Thus, results from the Zhang et al. study 
should, at most, be regarded as a benchmark. 

To answer the latter question about treatment 
administration, one must look at the ideal profile 
of a pharmacological agent. The ideal drug can be 
orally administered, has high potency, and displays 
minimal side effects.4 CFTR-repairing drugs or 
CFTR modulators have been shown to display 
this profile and, therefore, could have strong 
therapeutic potential. 

CFTR MODULATORS

CFTR modulators can be broadly defined as 
small molecules that target and repair specific 
defects caused by mutations to the CFTR gene. 
CFTR modulator drugs can either have corrector 
or potentiator capabilities.2,11

CFTR correctors allow for mutated CFTR 
proteins, which would normally be degraded 
prior to embedding in the cell membrane, to 
be trafficked to the cell surface. The mechanism 
of CFTR correctors is unique to the specific 
mutant. For example, CFTR correctors that are 
designed to target ΔF508 are thought to inhibit 
deglycosylation, thus reducing CFTR interaction 
with calnexin, a protein that induces early 
degradation.15  By definition, correctors could be 
used for therapy on CF patients with mutations in 
Class I, II, V and VI.2, 11

Conversely, CFTR potentiators interact with 
mutated CFTR channels that are able to embed 
in the cell membrane, but display reduced 
conductance or altered gating. These potentiators 
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FIGURE 1: A diagram 
displaying the current 
understanding of the 
structure of CFTR protein.4
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act to either enhance anion movement or repair 
the gating mechanism of the mutant CFTR. It is 
thought that potentiators work by altering NBD 
dimerization. Specifically, these potentiators 
might be binding at the interface of the NBD 
dimer, lowering the free energy of the transition 
state and accelerating channel opening. Also, it 
is thought that potentiators may slow down the 
rate of channel closure by stabilizing the dimer 
conformation.11, 16 Potentiators could be used as 
therapy for CF patients with mutations in Class 
III and IV. It should also be noted that some small 
molecule CFTR modulators have been shown to 
have both corrector and potentiator properties. 

As ΔF508 is the most prevalent mutation of 
CFTR, it will be the focus of the discussion 
of treatments. Currently, the most advanced 
chemical corrector of ΔF508 is an efficacious 
and selective ΔF508 corrector, VX-809, as 
demonstrated in vitro by Van Goor et al. This was 
confirmed by measuring the fractional conversion 
of endoplasmic reticulum-associated, immature 
CFTR to the mature glycosylated form.  Van 
Goor et al. also showed that VX-809 was able 
to restore chloride transport in cultured human 
bronchial epithelial (HBE) cells to approximately 
14% of that measured in non-CF HBE cells.17 
As these early results of VX-809 have shown the 
potential for clinical benefits, Phase II trials have 
begun. One early trial by Clancy et al. has shown 
that VX-809 has a good safety and adverse events 
profile. Additionally, VX-809 was shown to reduce 
sweat chloride levels in a dose-dependent manner. 
However, when using forced expiratory volume in 
one second (FEV1) as a measure of clinical efficacy, 
no significant differences were seen in patients 
taking VX-809 in comparison to placebo.18 Thus, 
it is currently thought that a CFTR corrector 
alone is not sufficient to be clinically significant 
and needs to be administered adjunctively with a 
CFTR potentiator.

One important CFTR potentiator that has been 
developed is VX-770.5 It has been tested on 
patients carrying the CFTR mutation G551D, 
which causes altered CFTR gating (Class III 
mutation). Like VX-809, VX-770 has shown 
to be well-tolerated without notable side-effects. 
Additionally, in one randomized, double-blind, 
placebo-controlled trial of VX-770, positive 
clinical effects have been shown.  In comparison 
to the placebo, patients with the G551D mutation 
taking VX-770 showed an FEV1 change of more 

than 10%. Additionally, these subjects had 55% 
fewer pulmonary exacerbations.19 Due to the 
positive clinical effects of VX-770, it is thought 
that this potentiator could have synergistic 
effects with VX-809 in patients with the ΔF508 
mutation. Combining these two therapies in a 
dual therapy is sensible, as a corrector drug like 
VX-809 may save CFTR from degradation, but 
once embedded in the apical membrane it still 
may display minimal function. By utilizing both a 
corrector and a potentiator drug, CFTR could be 
fully “repaired” by the combination of corrector-
induced degradation prevention and potentiator-
induced conductance increase. 

The combination of VX-809 and VX-770 
has been tested in two Phase I trials.20,21 The 
purpose of these trials was to test for drug-drug 
interactions and safety. Although the results of 
these trials were not published, it can be assumed 
that there were no serious safety issues, as a Phase 
II study is currently in progress.22 The primary 
outcome measures of this trial are to look at 
safety and tolerability assessments, change in 
sweat chloride, and the relative change in percent 
predicted FEV1.  Results of this trial could be 
important in determining if a combination of 
CFTR potentiators and correctors could be 
useful in a clinical setting. Although trials are 
still occurring for VX-809 and VX-707, they 
have been designated as “breakthrough therapies” 
by the US Food and Drug Administration. This 
designation gives patients access to these drugs, 
which aid in reducing mutant CFTR.23

CONCLUSION

In summary, CF is a disorder that has benefited 
greatly from advancements in treatment, as 
evidenced by the increased survival age of CF 
patients. However, it is clear that to see further 
improvement, treatments need to be developed 
to directly target the root cause of CF: mutant 
CFTR. CFTR modulators, small molecules 
that repair CFTR, have shown great potential 
to improve CFTR function in vitro, though 
results in the clinical setting are varying. Due to 
these varied results, the potency of some CFTR 
modulators has been questioned. Currently, the 
use of multiple CFTR modulators is being tested 
for synergy in the clinical setting. If these CFTR 
modulators prove to be clinically beneficial, it is 
likely that we will see further improvement in the 
quality of life and survival age of CF patients. ■
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