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This paper assesses the charge separation and intermingling from a double-discharge dielectric 
breakdown through simulation of Poisson's equation with various charge distributions. The degree of 
separation between the two breakdown paths is assessed by  a measure of energy potentially storable in 
the system. A baseline energy value for a parallel plate capacitor was calculated as E0=7.40126. The 
maximum value achieved was 40.6072 in the same units, under a Gaussian charge distribution. The 
majority of simulations encountered a phenomena outlined called single-breakdown domination, that 
restricted results with high energies. Three of four distributions consistently gave associated energy values 
above the baseline for every simulation. Higher associated  are expected under higher resolution
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I. INTRODUCTION 
 

The concept of dielectric breakdown is a central 
theme affecting phenomena from lightning to 
performance in solid-state electronic devices. Often, 
breakdown is seen as an undesirable event as in the 
context of transmission lines and in exceeding 
operating voltages in circuitry. However, the unique 
properties of self-avoidance, efficient spreading, and 
selective conduction suggest that useful devices could 
be fabricated  based on this principle.
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Breakdown can be characterized as positive or 
negative, corresponding to electron flow out of or into 
the material respectively. Positive breakdown is typified 
by a more dendritic and self-avoiding structure and will 
be considered.

4
  The dynamics of the breakdown can 

be effectively simulated by an iterative numerical 
analysis wherein Poisson's equation is solved at every 
time step to give breakdown probabilities. Two 
situations may be taken for boundary conditions for 
such a model. The first takes the breakdown path at 
fixed low potential and a boundary sufficiently far away 
at fixed high potential and solves in a charge-free 
medium, reducing the problem to a solution of 
Laplace's Equation. Here, the breakdown spreads 
outward freely into space like the simulation performed 
by Niemeyer et al.

1
 The second approach considers a 

fixed low potential for the breakdown path, but assigns 
no boundary ring, instead including a spatially varying 
charge distribution. Using this model, a directed 
breakdown may be stimulated in a material. This model 
will be further explored. 

 
A. Numerical Analysis of Poisson's Equation 

 
Poisson's Equation is a generalization of Laplace's 

equation used to describe the electric potential field, V, 
in the presence of a charge distribution as well as 
boundary conditions.  

The equation can be represented in vector-calculus   
notation, taking ρ to be the charge density and ε to be 

 
 
the electrical permittivity constant as:

5
       (1) 

 

 
 

In order to perform an spatially and temporally  
discretized analysis, the five-point stencil method will 
be employed on a 2D grid. Taking arbitrary spatial 
units such that lattice spacing is set to 1 gives:

3
     (2) 

 

 
 
The array of values for V can be solved by setting by 
concatenating columns of the 2-D array with size ( m , 
n ) together to give a vector with size ( m·n , 1 ). Then, 
a matrix D with size ( m·n , m·n ) can be matrix 
multiplied to the charge distribution at a given iteration 
to equate each value of the field to one quarter of the 
sum of each of its horizontal and vertical neighbours 
with edge points only considering values within the 
array limits. The form of D is shown in Figure 1. The 
dependence of only vertical and horizontal 
components, and not diagonals is justified based on 
the preferential breakdown in crystallographic 
orientations as noted by Budenstein.

2
 The result of this 

multiplication then adds a vectorized form of the 
charge distribution at each point, with size ( m·n , 1 ) 
taken in arbitrary charge units to eliminate ε. This 
process completes one iteration for calculating the 
value of V. 
 
Successful numerical convergence has been found 

with a number of iterations greater than 30. This 

analysis uses 50 iterations to calculate V. Once the field 
values at each point are determined, the approach  
 

 
 

FIG. 1. The form of the matrix D corresponding to an array with size  
( 3 , 3 ). Note the evident symmetry when the matrix is divided into 9 
blocks of ( 3 , 3 ) 
 

 

 
McMaster Journal of Engineering Physics, 2017, [vol 2], 1 



Determining Separations of Multiple Dielectric Breakdowns 

 

of Niemeyer et al. is taken, and a point is selected at 

random from the available points vertically or 

horizontally next to the breakdown paths at that time 

step, based on the local field values as shown:
1
       (3) 

 

 
 

 The value of η is taken to be 2, and may be changed 

based on the given material properties.
1 

 

Upon selection of a given point, the point will be added 

to the set of breakdown-path values, from which 

available future points may propagate; the value of the 

field at that point will be set to zero; and the value of 

the charge distribution at that point will be set to zero. 

Thus the value of the field stays zero since each 

iteration performs:               (4) 

 

 
 

Where k is the iteration number and is the C vectorized 

charge distribution 
 

 
B. Problem Statement 

 

The approach outlined in the previous section will be 
used with a starting condition where two "seeds" will be 
set at opposite ends of a square lattice. The values of 
the field and charge distribution are initially set to zero, 
and the points are added to the set of the breakdown-
path values, so available points may originate from 
these two ends of the dielectric. The entirety of the rest 
of the dielectric will be initialized with a specified 
charge distribution representing excess injected 
electrons in the medium. 

 
Budenstein outlines how the breakdown-path forms 

an electrically conductive continuous region.
4
 The 

implication of the numerical model that has been set up 
is that two points are connected by a path if a 
breakdown has occurred from one point into the other. 
With this consideration, it can be seen immediately that 
two separate breakdown paths will never connect to 
form a single path since this would imply that an 
electrostatic force be present between two points of 
equal potential, and this idea is not possible by the 
definition of an electrostatic force being proportional to 
the gradient in the electric potential. In the numerical 
model, this prohibition is encapsulated in Equation (3), 
where the probability, p, becomes zero if Vi',j' is zero. 
The property can be thought of as a corollary to the 
principle of self-avoidance for a single breakdown. 

 
These two breakdowns will evidently be completely 

separated from each other, but the question may be 
posed as to which initial charge distributions compel 
the two discharges to be closest to one another. This   

 
paper seeks to simulate under different charge 

distributions to determine how these starting conditions 

produce different results.  
 
II. CHARGE DISTRIBUTIONS 

 

An ideal charge distribution draws each discharge 
toward the center for the greatest degree of closeness. 
Four separate charge distributions were used in the 
simulation of the breakdown. Under each distribution, a 
reflectional symmetry was preserved between the two 
charge distributions so that neither was favoured in 
breakdown probability with initial conditions. Each 
distribution was taken to be a simple shape and the 
total charge in the dielectric was normalized to 100. 
The units were arbitrary, but consistent between 
simulations. 

 
The four distributions that were considered were: 
 

A  Flat uniform charge 
B  Impulse at center line 
C  Quadratically increasing to center maximum 
D  Gaussian about center  

 

The distributions used are shown in Figure 2, where 
the initial seed points are located at opposite points 
along the variant-charge axis, halfway along the 
invariant-charge axis. 

 

 
FIG. 2. The spatially varying charge distributions used in 
each set of simulations. Note the figures show flat distribution 
(top-left), impulse distribution (top-right), quadratic 
distribution (bottom-left) and Gaussian distribution (bottom-
right) 
 

The quadratic and Gaussian distributions are held at 
zero potential at each end of variant-charge axis. The 
Gaussian takes the form of exp(-⍺(x+b)

2
), where ⍺ is 

set to 0.01.  
 

III. SIMULATION SETUP 
 
The limitations of computing power and speed 

provide a compromise in detail of simulation, and 
number of simulations for a particular charge  
________ 
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distribution. It was decided that adequate breakdown 

structural detail could be achieved, for the purpose of 

discerning broad characteristics of the breakdown, with 

a grid of size ( 40 , 40 ). Computing speed rapidly 

drops as the number of elements in D increases 

quartically with the length of a square grid. With this 

size of the array, D has a size of ( 1600 , 1600 ) with 

2560000 elements in it. Though it is a sparse matrix, 

repeated iteration becomes very slow. 

 

 For each of the given charge distributions, 200 

simulations were performed in order to provide an 

accurate depiction of breakdown character. The 

simulation was started with the specified charge 

distributions and these distributions would be zeroed at 

particular breakdown-path values. For each time step 

in each simulation, the field value was calculated 

numerically using 50 iterations Equation (4), and then 

the next breakdown-path value was selected using 

Equation (3). Any particular simulation was terminated 

when either one quarter of the array was populated by 

breakdown, or when the maximum field value was 

below a threshold.  

 
The outputs of each simulation was given as the 

indices for each breakdown path. The analysis of the 
data was a function of both of these path index sets as 
input variables 

 
 

IV. RESULTS AND ANALYSIS 
  
The results of each breakdown gave a multitude of 

different types of breakdowns, and therefore presented 

a challenge to sort through. For a majority of the data 

obtained, the two breakdowns were very uneven in 

terms of size of breakdown path. This meant that one 

of the seeds produced a breakdown that dominated the 

space of dielectric array, while the other produced a 

practically negligible result. Figure 3 shows examples 

of this feature that will be termed single-breakdown 

domination.  

 

For an analysis of this data, a simple parameter that 

took the ratio of the number of elements in the larger 

breakdown set, divided by the number of elements in 

the smaller set was thus considered. This ratio, gives a 

value, by definition, between 0 and 1, that compares 

the degree of equality of the two breakdowns in size. 

Ratios close to 0 correspond to a single dominant path 

and ratios close to 1 correspond to a path that is 

equally spread between two breakdowns. Figure 4 

gives a histogram of the ratios observed under each 

charge distribution. 

 

 The pervasive phenomena of single-breakdown 

domination can be explained by the fact that the 

breakdown path that starts developing closer to the 

charge distribution has a growing field probability at 

___ 

 

FIG. 3. Examples of Single-Breakdown Domination. This 
feature is inherently present in some breakdowns. The figure 
shows an example from each breakdown in the same order 
as Figure 2. The breakdowns are represented in red and blue 
respectively, and the rest of the dielectric is green. Shown 
are the cases with the smallest breakdown ratios 

....................................................................................

the tips of the breakdown (in the case of an 

inhomogeneous charge distribution)
4
, as well as more 

available lattice points to spread to with each time step. 

The two effects together make it unlikely to have a 

Ratio close to 1 since the symmetry between the two 

breakdowns is unstable, and one breakdown quickly 

becomes far more likely to breakdown again than the 

other. The phenomena is extremely evident in charge 

distribution B, as shown in Figure 3, and is emblematic 

of the vast majority of its breakdowns. 

 

With this analysis alone, the clear best situation 

would be a homogenous charge distribution that 

prefers an even breakdown. However the size of the 

breakdown isn't the only criteria. The main reason for 

selecting charge distributions that are heavy at the 

center is to draw the two breakdowns toward the 

.........._ 

 
FIG. 4. Histograms of breakdown ratios in each charge 
distribution. The order of the charge distributions is the same 
as in Figure 2 
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center. The homogenous charge distribution gives the 

breakdown paths no "incentive" to move toward th 

center. Figure 5 shows characteristic examples of a 

homogenous breakdown, with the notably similar 

character that the two breakdowns stay on their 

respective sides of the dielectric, with little 

intermingling at the center. The fact that the distribution 

of the inhomogeneous case does not peak is what 

contributes its lack of susceptibility to single-

breakdown domination, since the local field values as a 

breakdown moves into the dielectric actually shrinks 

instead of growing. 

 

 
FIG. 5. High breakdown-ratio simulations for the 
homogenous charge distribution. Note that in this charge 
distribution, the two breakdowns are relatively separated 

 

Thus the ideal breakdown structures are typically 

those from breakdowns B, C and D, that have 

breakdown ratios closer to 1. These situations can be 

shown to have a high degree of intermingling inherent 

in the fact that both breakdowns have much of their 

paths within the shared center region.  
 

A complete analysis of the degree of intermingling 

will be quantified by a useful property. Once the 

breakdown is completed, the internal charge 

distribution will be discarded and assumed to have 

dissipated. Now, one breakdown will be set a positive 

potential and the other will be set to negative potential. 

The potential throughout the medium will then be 

calculated  using Equation (4) iteratively as previously 

performed, however, C is now taken as zero. Now, the 

magnitude of the square of the gradient at each point is 

taken, and this value gives at each point the local 

squared electric field value by:
5
         (6) 

 

 
 

The square of the electric field gives an associated  
measure of the stored energy in the field between two 
discharges.

5
 The sum of these values over the medium 

is in a practical sense, a degree of intermingling 
between the two.  The values must be tested against a 
baseline, so the case where two opposite edges were 
broken down, as in a parallel plate configuration, was 
tested and yielded an "energy" value of E0 =7.40126 in 
arbitrary units. Figure 6 show the analysis of the 
energy in a highly-intermingled breakdown that yielded 
energy value of 38.2498 in arbitrary (but identical) units. 

 
 

 
FIG. 6. Highly intermingling breakdown from Gaussian 
charge distribution. The left shows the breakdown paths. The 
middle shows the electric potential with red set to high and 
blue set to low. The right shows the gradient of the potential, 
or local electric field. 
 
 
The analysis was performed on each of the performed 
simulations, and the cases that produced the highest 
stored energies were those produced from Gaussian 
charge distribution that had ratios close to 1. Figure 7 
shows a histogram of the field energies in each 
simulation. The quadratic and the gaussian 
distributions produce the highest energies. The 
greatest energy calculated gives a value of 40.6077. 
This is 5.496 times larger than E0 ____ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
FIG. 7.  Histograms of the energies for each charge 
distribution. The ordering is the same as in Figure 2Note the 
scales for each of the histograms, show that Gaussian and 
Quadratic give the largest results, while Impulse gives the 
smallest 

 
V. Conclusion 

 
This article simulated double breakdown in a 

dielectric material and used those simulations to 
provide useful results that could see the concept 
applied. Unfortunately it was evident from the data that 
the vast majority of the multiple breakdown events did 
not correspond to multiple breakdown, but instead 
were prone to single-breakdown domination, a concept 
discussed in this article. Thus it would be impractical to 
try to use this method to produce a physical device due 
to unpredictability. The best results, however managed 
to provide a method of stored field energy that were 5 
times larger than the capacitive method at this 
resolution (with an energy of 40.6072). One interesting 
observation is that two extremes for charge distribution 
were both modelled (ie. flat distribution, and impulse), 
and neither produced optimal results, both being well 
outperformed by other distributions. This means that 
there exists some  best charge distribution for 
intermingling, and low separation giving high energy 
that has not yet been determined.  
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