
Semantic Attention Networks

Semantic Attention Networks for Intuitive Information Retrieval
Jonathan La1

McMaster University, 1280 Main Street West, Hamilton Ontario, Canada

(Dated: 12 January 2018)

In this work we present a siamese LSTM-attention network capable of both learning semantic similarity
between sentence pairs as well as highlighting significant tokens important for the prediction task. Highlighted
tokens are then used to demonstrate simple comparison, summary and topic modelling methods which can
be used by a human analyst for the purpose of information retrieval tasks with increased efficiency. The
target application for the proposed network is for understanding general semantic trends and finding specific
semantic information in a large text data set such as a social media network.

I. INTRODUCTION

The ability to accurately identify semantically similar
text entities (eg. words, sentences and paragraphs) has
been a growing research interest to the natural lan-
guage processing community, as is evidenced by recent
competitions1. Historically, comparing text semantics
relied heavily on word-nets, bag-of-word implementa-
tions and token-count statistics, however neural network
models have since been shown to be increasingly effective
at learning semantics2–4. Many of these methods rely on
the successes of the Long Short Term Memory (LSTM)
network, capable of both converting an arbitrary-length
sequences into a fixed-length vector as well as capturing
long range dependencies over inputs5.

Although neural networks offer great predictive power,
it is often difficult for a human analyst to interpret how
the model is learning. The ability to provide an analyst
with an intuitive understanding of how the model is
making predictions is useful not only for further model
development and refinement, but can also serve as a
simple interface for information compression. Precisely,
we focus on the particular problem of navigation
through a large data set composed of text elements
(sentences, short paragraphs), where navigation entails
both developing an understanding for general themes
in the data set via cluster analysis as well as efficiently
finding specific semantic information embedded within
the data set.

II. APPROACH

Our approach combines the semantic predictive power
of the Dependency Tree-LSTM (DTLSTM)3 and the
self-structured attention mechanism with penalization
strategy6. The model takes as input a left and right
sentence pair along with a label of semantic relatedness,
and training is performed in a supervised fashion. The
network is siamese (shared model weights) with respect
to how the inputs are processed, although this could be
changed for information retrieval tasks where the left
and right application domains differ.

Formally, our model takes as input two text sequences
together with a numerical label of semantic relatedness
between them y ∈ R. Each sentence is then tokenized
using the Stanford Neural Network Dependency Parser7,
and the label y is encoded as a vector ȳ ∈ Rnc (nc the
number of target classes) allowing for the use of the KL
divergence loss function. Sentences are then padded to a
set length n with a padding token prior to being encoded
using pre-trained Stanford Glove embedding vectors
x ∈ Rde , with de the embedding vector dimension (300
in our case)8. The embedding vector sequences are
then passed into a single-layer DTLSTM, which updates
its hidden state at each sequence-index of the input.
Rather than keeping only the final hidden state of the
DTLSTM3, we keep all hidden states formed at each
sequence-index update and form the matrix H ∈ Rn∗dm ,
where dm is the hidden layer size of the DTLSTM.

Figure 1: Our model combines the dependency tree-LSTM

(DTLSTM) and the self-structured attention mechanism to

create representations of each input sentence. Represen-

tations are then combined considering 3 different distance

measures before being passed through a final MLP for

prediction

McMaster Journal of Engineering Physics, 2017, [vol], 1

Semantic Attention Networks

We then choose a linear combination of the hid-
den states in H using the self-structured attention
mechanism6 a ∈ Rn:

a = softmax(ws2tanh(Ws1H
T))6

With Ws1 ∈ Rda∗dm , ws2 ∈ Rda and da represent-
ing the number of attention units. We allow for
r different attention hops over H by extending ws2

to Ws2 ∈ Rr∗da yielding the annotation matrix A ∈ Rr∗n:

A = softmax(Ws2tanh(Ws1H
T))6

By applying this attention mechanism to the origi-
nal sentence embedding matrix H we obtain a new
sentence representation M ∈ Rr∗dm :

Ml = AlHl
6

Mr = ArHr
6

We then apply a batched dot product between the
2-D matrix M and a 3-D weight tensor Wf ∈ R1∗dm∗do1

with relu non linearity, which can be understood as
applying a different single-layer Multi-Layer Perceptron
(MLP) with hidden layer size do1 without bias to each
row of M , yielding F ∈ Rr∗do1 :

Fl = relu(batcheddot(Ml,Wf)) 6

Fr = relu(batcheddot(Mr,Wf))6

We then squash Fl, Fr into sentence vectors kl

and kr ∈ Rdo1 using a single-layer MLP with relu
nonlinearity, parametrized by weight tensor Ws ∈ Rr∗1

and bias term Bs ∈ Rdo1

kl = (FT
l Ws + Bs)

T

kr = (FT
r Ws + Bs)

T

We then combine kl and kr into a single vector
Φ ∈ R3do1 which considers the relative difference, mean
and element-wise product between the pair:

Φ(kl,kr) =
[
u, v, w,

]
=

[
kl − kr, kl � kr,

1
2 (kl + kr)

]
Where � represents the Hadamard (element-wise)
product. We then feed Φ through a final 2-layer
MLP with leaky-relu and sigmoid non-linearities,
followed by a softmax output. If the first and
second MLP layers are parametrized by weight
and bias tensors Wf1 ∈ R3do1∗do2 , Bf1 ∈ Rdo2

and Wf2 ∈ Rdo2∗do3 , Bf2 ∈ Rdo3 respectively,
and the output layer by weight and bias tensors
Wf3 ∈ Rdo3∗nc , Bf3 ∈ Rnc , then the prediction vector
ypred is given by:

Y1 = leaky − relu(ΦWf1 + Bf1)
Y2 = sigmoid(Y1Wf2 + Bf2)
ypred = softmax(Y2Wf3 + Bf3)

During training, the loss is then computed as the
KL-divergence between ypred and ȳ. To constrain
attention weights to eligible (non-pad) tokens, a penal-
ization term for the self-structured attention matrix is
introduced A given by P = ||(AAT − I)||2F , where I is
the identity matrix6. This penalization term is obtained
for each input as it passes through the network, and is
added to the total loss function.

III. TRAINING PROCEDURE

The SICK1 data set contains 9927 sentence pairs with
a 4500/500/4927 training/development/test split13, re-
spectively. The padding length is set to n = 40, and
calibration is done using random search over the follow-
ing parameters: learning rate, weight decay, dm, do1,
do2, do3, r, da and dropout, as well as some model
components such as MLP nonlinearities. The optimiza-
tion is performed using the Adagrad optimizer9, and
KL divergence is used as a loss function. Dropout was
applied to each layer of the final predicting MLP, ex-
cluding the output layer, and calibration yielded the
following parameters: learning rate=0.0045, weight de-
cay=0.007, dm=350, do1=1000, d02=280, do3=280, r=7,
da=40, dropout=0.07. After calibrating our model on the
development set, we apply the best-performing model to
the test set.

IV. RESULTS

After calibration we train our model with the above
parameters for 20 epochs, obtaining a SICK1 test set
accuracy (Pearson correlation) of 86.79%, compared to
the test-set accuracy of the dependency tree-LSTM3

alone achieving a Pearson correlation of 86.76 %. We
note that better performing models use significantly
more data via transfer learning, with state of the art
transfer learning methods achieving 88.5%10.

The addition of the self-structured attention mech-
anism does not significantly add to performance results,
however it does allow us to visualize which elements
of each sentence are most important for predicting
semantic relatedness. Next, we investigate three simple
methods for enhancing the efficiency of an analyst during
information retrieval tasks. To demonstrate, we ran-
domly sample 500 sentences from the entire SICK data
set and compute the O(n2) pairwise similarity between
each sentence pair. For each sentence-pair comparison,
the attention weightings are stored for each sentence for
later inspection. The resulting similarity matrix is then
clustered using spectral clustering, allowing the nearest
neighbours (and clusters) of sentences to be identified.
In the figures below we rank sentence tokens based on
their learned attention weightings, where we add colour

McMaster Journal of Engineering Physics, 2017, [vol], 2

Semantic Attention Networks

to emphasize the top 3 vales (more than 3 highlighted
tokens indicates that multiple tokens received the
same attention weight). The highest attention weight
is indicated in red, and all others in orange for simplicity.

The first and most obvious way to use the atten-
tion weights is during the direct comparison of two
sentences. By highlighting the parts of the sentence
deemed most relevant to the prediction task, an analyst
is able to gain valuable insight into how the algorithm is
learning. This could be used by an analyst to determine
how the model is lacking, and could provide an interface
for teacher training via semi-supervised learning.

s1:
A woman who is wearing a pink boa is riding a bicycle

down a bridge built for pedestrians

s2: The cyclist is performing a trick in the air

s1: The ice skating rink placed outdoors is full of people

s2: A lot of people are in an ice skating park

s1:
The young boys are playing outdoors and the man is

smiling nearby

s2: The kids are playing outdoors near a man with a smile

Figure 2: Attention weightings used to compare two

sentences s1 and s2. Predicted similarity between s1 and s2

are 0.44 (top), 0.83 (middle) and 0.93 (bottom)

The tokens receiving the highest attention can also
be used as an effective summarizing method, which can
be used to compress larger text objects into a short-list
of significant keywords. Using such a method could allow
an analyst to increase efficiency in information retrieval
tasks by scanning summary methods rather than reading
raw text. To demonstrate this we choose a reference sen-
tence from the original 500 sentences and determine its
nearest neighbours (neighbour members of correspond-
ing cluster). For all summaries, stop words11 are ignored.

Ref. Summary Reference

Five, front, child, hut
Five wooden stands are in front of

each child ’s hut

NN Summary Nearest Neighbours

Five, standing, hut
Five children are standing in a

wooden hut

angels, snow, children
Two angels are making snow on the

lying children

amphitheatre, talking,

boy

There is no adult in the amphithe-

ater talking to a boy

children, playing, wait-

ing

There are no children playing and

waiting

boy, standing, water A boy is standing in the water

Figure 3: Demonstration of a simple summary method

using attention weights between a reference and its nearest

neighbours. By comparing summaries rather than original

text, an analyst can more efficiently search through clusters

and find elements of interest. Corresponding predicted

similarities (from top to bottom) are 0.56, 0.49, 0.49, 0.49

and 0.49.

The same method can be extrapolated further to a
simple topic model over clusters. Beginning with a clus-
ter of semantically similar text, we can obtain keywords
(a summary) of each member. These tokens can be
extended to a topic model using heuristic methods (such
as common hypernyms), by augmenting existing topic
modelling systems (eg. Latent Dirichlet Allocation), or
used directly. For demonstration purposes we simply
rank the summary tokens by frequency, adding colour
for effect.

Topic

Dog

Grass

Green

Jockeys

Field

Horse

Summary

dog, running,

grass

dog, excit-

edly, grass

jockeys, field,

green

field, horse

jockeys

dog, green,

grass

dog, green,

grass

Originals

A dog , which is brown , and a

black one are running in the grass

A dog is excitedly playing with

water in the grass

The Jockeys are riding horses

on the field, which is completely

green

The green field for horse races is

completely full of jockeys

A dog , which is small , is playing

tirelessly on the green grass

A dog , which is small , is playing

on the green grass

A dog , which is small , is running

out on the green grass

Figure 4: Simply topic model over a cluster. Topics are

sorted by descending frequency with colour added for empha-

sis (left). Summary methods (middle) and original (right) are

also shown

V. DISCUSSION

Although the addition of the self-structured attention
mechanism to the DTLSTM does not improve perfor-
mance on this particular data set, it does provide a
method for an analyst to gain valuable insight into how
the algorithm is learning and a method for information
compression. Due to the large number of parameters
in the network (significantly more than the original
DLSTM), we expect that performance improvements
can be obtained by increasing the amount of training
data through transfer learning or by generating more
training data (eg. with thesaurus-based information12).
The self-structured attention mechanism is understood
to help an LSTM network learn long range dependencies
by learning dependencies itself, relaxing some of the
burden from the LSTM6. However, due to the short
sentence lengths (i.e. lack of long range dependencies)
comprising the SICK data set, we postulate that the
DTLSTM itself (without the self-structured attention
mechansim) is sufficient for learning the necessary long
range dependencies. Evidence of this phenomena can
be seen in the way that the attention weightings accu-

McMaster Journal of Engineering Physics, 2017, [vol], 3

Semantic Attention Networks

mulate towards the end of the sentence, explainable by
considering that the DTLSTM accumulates information
to its last hidden state and thus the last token receives
the most significance. Therefore, an obvious next step
for this work is to apply the model to larger data sets (or
to the SICK data set after transfer learning) and to data
sets comprising larger sentences (increased necessity for
maintaining long range dependencies).

The main emphasis of this work was to show how
attention mechanisms could be used with semantic
similarity networks in order to improve the efficiency
of information retrieval tasks. To do this, we had
to compute the pairwise (O(n2)) similarity between
sentences, which is computationally infeasible for en-
gineering solutions. To address this issue, networks12

have been developed to compute sentence embeddings
(O(n)) which can then be compared with simple dis-
tance metrics, drastically reducing the computational
requirements for computing similarities and forming
clusters.

VI. CONCLUSION

In this work we demonstrated how the high-performing
dependency-tree LSTM3 model can be combined with
the self-structured attention mechanism6 to create a
network that both learns semantic relatedness between
sentence pairs, as well as provides an interface for
condensing information for an analyst. Information
compression is obtained by identifying the tokens which
receive the highest attention weights, and has been
shown in this work to be useful for direct sentence
comparisons and developing intuition for how the model
is making predictions, comparison of summary methods,
rather than raw text, for the purpose of quick informa-
tion retrieval, and for a simple topic model over clusters.
Although the methods shown in this work rely on
simple thresholding and frequency ranking techniques,
learned attention weightings can be incorporated into
other systems (eg. Latent Dirichlet Allocation for topic
modelling) for improved performance. The next steps
for this work include applying the network to larger data
sets comprising longer sentence lengths (increased need
for long range dependencies), as well as investigating
methods for reducing the need for O(n2) pairwise
comparisons in order to form clusters.

The end goal for this work was to present a method
for partitioning a space of text objects in terms of
semantic relatedness, as well as providing a mechanism
for efficiently navigating the data set in order to find
general trends and specific information of interest.
Together, the methods discussed allow us to derive
semantic clusters from a data set, to look across cluster
topics to understand general trends in semantics, and to
investigate within clusters efficiently through summary

methods. Specific information can be found by looking
at the nearest (semantic) neighbours to a given search
query, followed by manual investigation of nearest neigh-
bour summary methods. We expect that applications
including social media navigation and survey-result
analysis could benefit from such a method.

VII. ACKNOWLEDGEMENTS

I would like to especially thank Riddhiman Das-
gupta for his open source Pytorch implementation of the
dependency-tree LSTM13 and Haoyue Shi for his open
source Pytorch implementation of the self-structured at-
tention mechansism14. The code for this work will be
released at https://github.com/lajd/.

1Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella
Bernardi, Stefano Menini, and Roberto Zamparelli. Semeval-
2014 task 1: Evaluation of compositional distributional semantic
models on full sentences through semantic relatedness and tex-
tual entailment. In SemEval@ COLING, pages 1–8, 2014.

2Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

3Kai Sheng Tai, Richard Socher, and Christopher D Manning. Im-
proved semantic representations from tree-structured long short-
term memory networks. arXiv preprint arXiv:1503.00075, 2015.

4Quoc Le and Tomas Mikolov. Distributed representations of sen-
tences and documents. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 1188–1196,
2014.

5S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. ISSN 0899-7667. doi:
10.1162/neco.1997.9.8.1735.

6Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu,
Bing Xiang, Bowen Zhou, and Yoshua Bengio. A structured self-
attentive sentence embedding. arXiv preprint arXiv:1703.03130,
2017.

7Danqi Chen and Christopher Manning. A fast and accurate de-
pendency parser using neural networks. In Proceedings of the
2014 conference on empirical methods in natural language pro-
cessing (EMNLP), pages 740–750, 2014.

8Jeffrey Pennington, Richard Socher, and Christopher Manning.
Glove: Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

9Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

10Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault,
and Antoine Bordes. Supervised learning of universal sentence
representations from natural language inference data. arXiv
preprint arXiv:1705.02364, 2017.

11Martin F Porter. An algorithm for suffix stripping. Program, 14
(3):130–137, 1980.

12Jonas Mueller and Aditya Thyagarajan. Siamese recurrent archi-
tectures for learning sentence similarity. In AAAI, pages 2786–
2792, 2016.

13An open-source implementation of the paper “a struc-
tured self-attentive sentence embedding” published by
ibm and mila. https://github.com/ExplorerFreda/

Structured-Self-Attentive-Sentence-Embedding. Accessed:
2018-01-10.

14Tree lstm implementation in pytorch. https://github.com/

dasguptar/treelstm.pytorch. Accessed: 2018-01-10.

McMaster Journal of Engineering Physics, 2017, [vol], 4

https://github.com/lajd/
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding
https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding
https://github.com/dasguptar/treelstm.pytorch
https://github.com/dasguptar/treelstm.pytorch

	Semantic Attention Networks for Intuitive Information Retrieval
	Abstract
	Introduction
	 Approach
	Training Procedure
	Results
	Discussion
	Conclusion
	Acknowledgements

