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Abstract 

Introduction: Pertussis, commonly known as whooping cough, is a bacterial respiratory tract 
infection caused by Bordetella pertussis. Pertussis affects more than 48 million people 
worldwide annually, most of whom are under the age of 5. 
Hypothesis & Objectives: The hypothesis being investigated is that pertussis incidence, 
between 2005 and 2016, is not equally distributed across public health units in southern Ontario. 
We aim to identify disease cluster locations and associate geospatial fluctuations in incidence 
rates with putative risk factors.  

Materials and Methods: Data was sourced from Public Health Ontario on pertussis incidence in 
southern Ontario for all ages, specifically for each public health unit’s geographical area. A 
choropleth map was generated using data smoothed by empirical Bayesian estimation in a spatial 
analysis context. Following the creation of an incidence map for southern Ontario, the spatial 
scan test was applied to elucidate the existence of any disease clusters at a public health unit 
level. Moran’s I was used to determine whether there was evidence of any spatial dependence in 
pertussis incidence. Finally, putative risk factors were assessed in Poisson regression models and 
spatial Poisson regression models as potential predictor variables. 

Results and Discussion: The flexible spatial scan test identified three spatial clusters where 
incidence rates of pertussis were higher than expected. A spatial Poisson regression model was 
fit that included predictor variables of socioeconomic status and population density. For every 
100 people/km2 increase in population density there was a significant 6% increase in pertussis 
incidence (p=0.03). Interestingly, vaccination rates were not found to be predictive of pertussis 
incidence nor did the variable improve the model. This epidemiological study identifies where 
pertussis incidence is clustered and what variables it is associated with, both of which are 
valuable for public health purposes and as a reference for future research into pertussis.  
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Introduction 
 
Background on pertussis 
 
Pertussis, commonly known as whooping cough, is an infectious disease that affects more than 
48 million people worldwide and accounts for approximately 300,000 deaths annually (1-4). In 
2017, Ontario saw 584 cases (5) while in the US there are over 48,000 cases of pertussis 
annually, with a high rate of underreporting due to mild symptoms being common (6).  

Pertussis is caused by the bacteria Bordetella pertussis which infects the respiratory tract 
and releases toxins, particularly the pertussis exotoxin, that irritate the airways and cause 
paroxysmal coughing spasms (7,8). Persistent coughing contributes to the highly contagious 
nature of pertussis. Pertussis is mainly a childhood disease, with 38% of reported cases being 
infants younger than 6 months, and close to three quarters of cases being children younger than 5 
years old (9).  
 Vaccines have been crucial in the decrease of pertussis incidence in the 20th century. In 
the United States, the incidence of pertussis decreased from 250,000 cases per year before 
vaccine introduction in the mid-20th century to as low as 1,010 reported cases in 1976.  
However, pertussis has slowly re-emerged, with pertussis outbreaks now being seen even in 
vaccinated populations. Reasons for this re-emergence may include a possible decreased 
effectiveness of the pertussis vaccine (4,10,11), or parents delaying or forgoing vaccination (12–
14). 

Moreover, the lack of robust reporting in the past contributes to the more recent rise in 
reported cases. Studies on cases of prolonged coughing suggest that despite the increase in 
reporting, pertussis is still more prevalent than was previously thought (4). It is likely that up to a 
million cases of respiratory illness due to pertussis infection exist in the US per year (4). 
 
Spatial Epidemiology 
 
The spatial pattern of a disease’s incidence is related to the agent, host, and environment, 
otherwise known as the “epidemiological triangle.” These factors are essential to learn about a 
disease and how to control it. Spatial epidemiology can provide clues about these factors and 
their interrelations. For example, testing for the level of clustering helps to determine the nature 
of the disease agent, finding clusters can identify populations at risk, and disease mapping helps 
in visualizing the environment (15). 

Clustering refers to the spatial dependence in the data. A disease can have a high degree 
of clustering where cases are found in close spatial proximity, a high degree of regularity where 
the disease is equally spaced out, or it can have neither of these patterns and be spatially 
independent. Disease clusters are regions where the number of cases is too high to occur 
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randomly and therefore those regions can be identified as high-risk. Thus, clustering and disease 
clusters refer to different spatial patterns and can be independent of one another. 

General linear models are a useful approach for describing patterns and relationships in 
spatial data. One of the assumptions of general linear models is that observations are independent 
of one another. However, when analyzing spatial data of a contagious disease this assumption 
may not hold true. If a disease is rare then it is often considered to follow a Poisson distribution. 
Thus, the analysis of risk factors for rare diseases often employs a spatial Poisson regression 
model (16). This type of model is part of a larger group called generalized linear mixed models 
(16). These models are random effect models, where the random effects are spatially correlated 
(16).  
 In Ontario, pertussis is a “reportable disease,” meaning physicians and other health-care 
practitioners are required to report cases of pertussis to their Medical Officer of Health. The rates 
of pertussis incidence are then collected by each Public Health Unit (PHU) and reported on an 
annual basis. It is expected in this analysis that pertussis incidence and the identified risk factors 
vary in space, thus prompting the use of spatial epidemiology to relate them. To the best of the 
authors’ knowledge no research has been conducted on the geospatial fluctuations in pertussis 
incidence in southern Ontario. 
 
Hypothesis 
 
This study seeks to investigate whether pertussis incidence is equally distributed across PHUs in 
Ontario between 2005 and 2016. We aim to identify possible disease clusters and associate 
geospatial fluctuations in incidence rates with putative risk factors. 
 
Materials and Methods 
 
Materials 
 
Incidence rates of pertussis and population size between 2005 and 2016 in each of the PHUs in 
southern Ontario were retrieved from Public Health Ontario (14). These annual data were 
aggregated so that each PHU had a cumulative value for both population and pertussis incidence. 
The base map used to visually represent the data was a boundary file of the 29 PHUs in southern 
Ontario retrieved from Statistics Canada (17). PHU data on vaccination rates were taken from 
the Technical Report of Immunization coverage for school pupils in Ontario (18). PHU data on 
population density and “low income” status were taken from the 2013 Census found on the 
Statistics Canada website (19). “Low income” was used as a measure for socioeconomic status, 
representing the percentage of families or individuals spending 20% more than average of their 
before-tax income on food, shelter, and clothing (19). 
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Methods 
 
Before the data was visualized or analyzed, it was adjusted in order to produce more statistically 
appropriate results. Given that population sizes differ between different PHUs and that pertussis 
is a relatively rare disease, there was a difference in the level of error in our estimates since the 
standard error increases with decreasing sample size. Essentially, regions with smaller 
populations tend to have less accuracy and are likely to have more extreme results. Regional data 
were therefore standardized with a method called shrinkage estimation prior to visualizing or 
analyzing the data (20). This is also called “map smoothing”, or empirical Bayesian estimation, 
in a spatial analysis context. Shrinkage estimation can be done based on iterative likelihood 
estimates for prior moments (21) or based on methods-of-moments estimators (22). Both 
methods for producing estimators are valid for rare events, which follow an approximate Poisson 
distribution.   
 A choropleth map was generated using the smoothed pertussis incidence. This was done 
under many considerations. The smoothed incidence by PHU over the entire study period was 
classified using the quintiles of the empirical distribution. Five colours were used in the map, as 
it was found that best differentiation between regions was found with 5 colours (23). The scale of 
the colours was generated based on the quintiles of the distribution of incidence rates (23). The 
colour scheme chosen was colour-blind adjusted, to accommodate those with colour-blindness 
(24). 
 After the data was smoothed and the choropleth map generated, clustering was tested for 
and specific disease clusters were identified. Clustering was tested for using Moran’s I 
correlation coefficient (25). This test is the spatial equivalent of Pearson’s correlation coefficient 
and values for it generally range between -1 and +1. Large positive values indicate strong 
clustering whereas large negative values indicate regularity in the distribution, and values close 
to zero indicate spatial independence (26). 
 Pertussis clusters, or regions with higher incidence rates than expected through random 
chance, indicating increased risk in those areas, were identified. This was done with a spatial 
scan test (27) which is based on scanning windows of fixed area size to identify locations of 
excess risk. Specifically, flexibly-shaped scanning windows were used because the circle, which 
is normally used as the scanning window in spatial scan tests, does not always represent the 
practical shape of disease clusters (28,29). The primary cluster (i.e. the most statistically 
significant) was identified, as well as any secondary clusters with less significance but 
potentially greater relative risk for pertussis infection.  
 A Poisson regression model was fitted using vaccination rates (at 7 and 17 years of age), 
low income, and population density as predictors. Since this type of model ignores spatial 
effects, a spatial Poisson regression model was also fitted to see if it held more explanatory 
value. These models start with the inclusion of all potential predictor variables and sequentially 
remove the least explanatory variable. Interaction effects between potential predictor variables 
were also investigated by testing whether the addition of interaction terms improved the model. 
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The model that was eventually chosen with this method maximized explanatory value while 
minimizing the number of variables by removing the ones that had the least significant effect.  
 All mapping and data analysis were done using R Statistical Software as a Geographic 
Information System (30,31). All statistical tests were also done in R and were evaluated at a 
significance level of α=0.05. 
 
Results and Discussion 
 
Maps of pertussis incidence in southern Ontario 
 
The visualization of pertussis incidence rates (Figure 1) is a geospatial representation of the 
average annual incidence of the disease over 2005–2016 in southern Ontario. Important to note 
in the legend is the difference in the length of each quintile because a long 1st and/or 5th quintile 
would indicate the potential for a geospatial outlier in pertussis incidence.  
 
Clusters 
 
There were three clusters identified by the flexible spatial scan test (Figure 2). The primary 
cluster was comprised of Toronto and York PHUs. The high population density of these two 
regions is the chief reason for this being the primary cluster. The number of new cases of a 
disease is strongly related to the number of susceptible individuals, with population density being 
a very important factor (32). Additionally, the large populations in these regions results in the 
largest power or amount of evidence for the presence of a cluster as identified by the flexible 
scan test. 

The other two clusters consisted almost entirely of PHUs made up of rural counties in 
Southwestern Ontario. Interestingly, the secondary cluster (consisting of Elgin-St Thomas, 
Huron, Oxford, and Perth PHUs) has a greater relative risk (RR=4.39, p=0.01) and standardized 
incidence ratio (SIR=4.02, p=0.01) than the other two clusters (Table 1). However, the smaller 
population means the analysis for this specific cluster is underpowered, which is likely why it is 
not the primary cluster. Rural southwestern Ontario regions, including Wellington and Dufferin 
counties, which make up part of the third cluster, have some of the highest incidence rates in 
southern Ontario. These counties are home to many of Ontario’s Mennonite communities, which 
tend to have lower vaccination rates than the general population (33). It is possible that there is 
an association between these lower vaccination rates and the increased incidence of pertussis.  
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Figure 1. Choropleth map of the smoothed pertussis incidence data in southern Ontario Public 
Health Units, from 2005 to 2016. 

 
Figure 2. Map of the three clusters of pertussis incidence in southern Ontario Public Health 
Units, from 2005 to 2016. The primary cluster is represented in red, the secondary cluster is 
represented in green, and the tertiary cluster is represented in blue.   
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Table 1. Clusters of pertussis incidence in southern Ontario and their supplementary data. 

Public Health Units Toronto, York Elgin-St Thomas, 
Huron, Oxford, 
Perth 

Wellington-Dufferin-
Guelph 

Cases 3290 733 246 

Expected Cases 2033 182 148 

SIR (Standardized 
Incidence Ratio) 

1.61 4.02 1.65 

RR (Relative Risk) 2.21 4.39 1.68 

p-value  0.01 0.01 0.01 

 
 

Finally, although three clusters of regions at higher risk of pertussis were detected, there 
was no evidence for an overall pattern of clustering in the pertussis incidence data for southern 
Ontario. Moran’s I was very close to 0 (-0.0345, p<0.001) indicating spatial independence. This 
spatial independence may be explained by the large geographic size of the regions (PHUs) used 
in our spatial analysis relative to the transmission radius of pertussis among the human 
population. This transmission area is relative to the activity area of humans, which should be on 
average much smaller than the PHUs. 
 
Regression model  
 
The model that was used was a spatial Poisson regression model that included low income and 
population density as predictor variables (Table 2). The presence of overdispersion in the general 
linear model motivated the use of a spatial model. Overdispersion is when the variance in the 
data is significantly greater than the mean, when they should be the same in a Poisson model. 
This was checked by looking at the ratio of deviance residual sum over degrees of freedom, 
which should be approximately equal to 1. Vaccination rates were not included because no 
relationship was found between vaccination rates and pertussis incidence. Population density was 
found to have a statistically significant effect with a relative risk of 1.06 (p=0.03). Given this 
relative risk, for every 100 people/km2 increase in population density there was a 6% increase in 
pertussis incidence. Low income was kept in the model despite not being significant (RR=0.35, 
p=0.08) because upon its removal, the size of the effect (i.e. RR) of population density changes 
dramatically. Thus, low income was identified as a confounding variable that was necessary to 
maximize explanatory value of the model. It has a relative risk of 0.35, therefore, for every 10% 
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increase in the proportion of families and individuals categorized as low income, pertussis 
incidence decreased by a factor of 0.35. 
 
Table 2. Spatial Poisson regression model for pertussis incidence in southern Ontario with Low 
Income and Population Density as predictor variables. 

Variable Estimate Standard 
Error 

Relative Risk p-value 

(Intercept) -8.936 0.717 N/A N/A 

Low Income -0.105 0.058 0.35 0.08 

Population Density  
 

0.001 0.0002 1.05 0.03 

 
  

The finding that vaccination rates were not significant was unexpected. A possible 
explanation for this finding is that since pertussis is a rare disease in southern Ontario and rates 
of vaccination are high, the differences between PHUs in vaccination rates are not substantial 
enough to cause any significant difference in incidence. Low income, defined as the percentage 
of families or individuals spending 20% more than average of their before-tax income on food, 
shelter and clothing, was inversely related to pertussis which was also unexpected. However, this 
finding was not significant and low income is a confounding variable with population density. 
This confounding is likely the result of the fact that the Toronto PHU is an outlier with the 
highest population density, and it is also the PHU with the highest value for low income. Thus, 
this result should be viewed with caution. 
 
Limitations 
 
Although pertussis is a reportable disease in Ontario, there is still a significant underreporting 
problem that affects the data for pertussis incidence (4). Underreporting of pertussis is likely due 
to pertussis infections sharing symptoms with other respiratory diseases, coupled with the fact 
that when symptoms are not overly severe patients often elect to not see a doctor for their cough.  
 Another very important limitation of this research is the lack of controlling for age when 
conducting tests or creating maps. Age is a crucial factor in pertussis incidence, since it is a 
childhood disease. It is possible that different PHUs have varying age distributions in their 
populations which influences the overall incidence. Age may have played an essential role in 
creating the clusters that were found and would be a confounding variable when associating 
these clusters with external factors such as vaccination rates or socio-economic status.  
 Toronto PHU being an outlier in population density is a limiting factor for making 
meaningful conclusions based on the regression model. However, removing this PHU from the 
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dataset leaves no significant variables in the regression model. Toronto is such a different 
environment from the rest of southern Ontario that classifying it alongside the other PHUs 
should restrict how the model is interpreted. Further, more detailed, analysis of Toronto would 
be necessary, but the respective data are not available for this project.  
 
Conclusions and prospective research 
 
Pertussis incidence in southern Ontario for the years 2005–2016 has a spatial pattern that has 
now been mapped. There are three clusters of higher-than-expected incidence in both rural and 
highly metropolitan PHUs. Vaccination rate was not found to be a significant predictor variable 
for pertussis incidence. Population density was identified as a significant predictor variable and 
was included in the spatial regression model. Socioeconomic status (SES), here represented by 
low income percentage, was a confounder between population density and pertussis incidence. 
However, it was included to improve the experimental model.   
 Knowledge of the spatial pattern of pertussis in Ontario as well as its predictor variables 
is valuable for public health workers who can use it to augment their strategy in reducing the 
incidence of this infectious disease. Primary care physicians who care for children in the higher-
risk clusters can also be better informed of the increased risk their young patients face.  
 Future research should be directed towards other potential predictor variables of pertussis 
incidence that were not included in this article. These variables include the different strains of 
Bordetella pertussis, different types of pertussis vaccines, household structure, climate, and other 
demographic factors. Future research should also be done in other geographic locations (such as 
another Canadian province, or a US state) to see whether the results here can be replicated 
elsewhere. Of particular importance is the question of whether vaccination rates have an effect 
on pertussis incidence in other developed areas. 
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