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SUMMARY

Suppose you wished to determine the probability of a basketball player scoring a three-point shot. Analyzing pre-
vious scoring data would guide you in arriving at a logical prediction. Now, imagine that you aimed to predict the
weather. Analyzing previous weather data may not be nearly as useful given that there are an unfathomable num-
ber of logged entries that each encompass a multitude of characteristics such as temperature, wind speed, season,
etc. An alternative to inefficiently relating data points based on a few overlapping characteristics would be to
simply reduce the complexity of the entire set. Rather than predicting the weather based on dozens or hundreds
of factors, you would only utilize the few that are the most impactful. This is manifold learning — reducing the
complexity of data sets for a more efficient examination. Many algorithms are currently being developed and im-
proved to limit characteristics of data entries, while retaining central information. These simplified entries are
graphed on a smooth curve and connected. Points that are crowded will be strongly correlated; hence, illuminat-
ing a hidden pattern. This paper will explore the importance of manifold learning in data analysis and its applica-
tions.

ABSTRACT

Advances in manifold learning have proven to be of great benefit in reducing the dimensionality of large complex
datasets. Elements in an intricate dataset will typically belong in high-dimensional space as the number of
individual features or independent variables will be extensive. However, these elements can be integrated into a
low-dimensional manifold with well-defined parameters. By constructing a low-dimensional manifold and
embedding it into high-dimensional feature space, the dataset can be simplified for easier interpretation. In spite
of this elemental dimensionality reduction, the dataset’s constituents do not lose any information, but rather
filter it with the hopes of elucidating the appropriate knowledge. This paper will explore the importance of this
method of data analysis, its applications, and its extensions into topological data analysis.
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rameters can lead to issues with clarity. This can make
INTRODUCTION subgrouping, and thus making informed conclusions,
difficult.3 On account of this, mathematicians have de-
Significant advances in the field of machine learning  veloped various techniques in alleviating inessential
can be attributed to the readily available high-quality dimensions in an effort to make machine learning al-
datasets that are vital for training algorithms.! These gorithms more efficient. This process is known as di-
datasets play an integral role in the development of = mensionality reduction and is crucial to understand
machine learning algorithms that attempt to predict  before delving into mathematical modeling of complex
outcomes. This is done by providing computers with data.4
large and complex datasets, from which they can de-
duce patterns. This knowledge of patterns can be used Dimensionality reduction aims to simplify datasets
to predict future outcomes. An instance of predictive  with the hopes of making them more efficient for ma-

modelling is in annual weather prediction. Climatolo-  chine learning algorithms. Dimensionality reduction
gists and meteorologists train machine learning algo-  can assist with scientific understanding by visualizing
rithms with previous weather data to recognize pat-  complex data. For example, if a dataset consists of 50
terns2. This knowledge is then used to forecast upcom-  dimensions, then there are 50 attributes categorizing
ing weather. This predictive process is both a benefit each individual point within that collection. This
and a burden. Although large sets of data provide algo- ~ makes the process of finding meaningful relationships
rithms with a breadth of information, they also hinder =~ very challenging as a great deal of irrelevant infor-
their efficiency with irrelevant or misleading details. mation must be filtered first. This irrelevant infor-
For example, crowding datasets with unnecessary pa-  mation is sometimes referred to as noise, large
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amounts of additional or meaningless information.5 If
a dimensionality reduction algorithm could be used to
convert 50 dimensions into 3, then it would expedite
the process of visualizing connections between data
points. Apart from visualization, dimensionality re-
duction may also assist in elucidating underlying forc-
es behind complex datasets. For example, dimension-
ality reduction can be used to improve the geophysical
log data that classifies crystalline rocks.¢ Log functions
are used to classify rock types after the machines
measure their characteristics, such as surface area,
density, porosity, etc. However, many of these log
functions may not be of use as several different types
of rocks have overlapping characteristics. Shale and
claystone, for example, are very similar in grain size.”
Using log functions that include similar characteris-
tics, such as grain size, when differentiating between
shale and claystone would be redundant. With the use
of dimensionality reduction algorithms, reduced-log
sets that are the most important to the classification
process can be used instead. Furthermore, providing
feedback to the original algorithm can extend the ca-
pabilities of this technique. Machine learning will al-
low the algorithm to optimize itself by learning from
the instances in which it was correct or mistaken.8
This will allow it to make more statistically advanta-
geous decisions and prioritize what reduced-log func-
tions should be provided to the geological machinery.
This instance of dimensionality reduction in machine
learning algorithms exemplifies the importance of
simplified datasets.

The simplification of large datasets by dimensionality
reduction serves to remove repetitive and overlapping
information. Take, for example, a large dataset that is
governed by 100 dimensions. Given the number of pa-
rameters, there is bound to be overlap in the data
points. It is possible that out of 10,000 elements,
1,000 will mirror the same behaviour along 15 dimen-
sions. If the goal is to find relationships between data
points, then continuous overlapping between parame-
ters will not show any real connection. This is an in-
herent inefficiency in the machine learning system and
can be undone by extracting the integral parameters
and excluding derivatives of the same dimensions.9 It
is important to note that reducing the dimensions does
not inherently limit the data itself. Suppose there is a
large data set of one million participants and one hun-
dred dimensions that indicate character traits. If the
dimensions are reduced to three traits, such as integri-
ty, honesty, and responsibility, 97 dimensions still re-
main for each data point. However, the additional 97
dimensions are virtually emphasized because the sys-
tem only visualizes relationships between participants
for the three traits. Furthermore, there could possibly
be infinite dimensions to the dataset, but only one
hundred were selected initially, and three left after the
reduction. Therefore, the potential classification of the
dataset is not bound by the three dimensions set by
the algorithm. This high-dimensional space that the

data could belong to is known as the feature space.°
The low-dimensional space that the algorithm reduces
the dataset to reflects the applied parameters. The
manifold structure that will soon be created will im-
port aspects of both high and low-dimensional space,
and will find meaningful relationships from large sets
of data.

NOTATION

» The high-dimensional points will be sectioned in
matrix X, where the ith row is x; (xi, X2, ..., xn). Here,
n is the number of points in the dataset and can
vary widely. Similarly, the low-dimensional param-
eters will be y,, ya, ..., yn» within the matrix Y.

» D is denoted as the dimensionality of the dataset
before the reduction algorithm is applied, located in
RP space. Resultantly, d is the dimensionality of the
deriving manifold.!2

» (v;, A;) are eigenvector-eigenvalue pairs for i = 1, ...,
n. From thisA;, 2 A2 2 ... 2 \n. If vy, ..., vg are the d
eigenvectors in high-dimensional space, then vn-g+s,
..., Un represent the low-dimensional d eigenvectors.
The eigenvectors will change due to the reduced
dimensionality of data. The notion of eigenvectors
will be elaborated on in the preliminaries section.!3

P k is the number of nearest neighbors while N(i) is
the set of k-nearest neighbors of x;. This algorithmic
concept will be discussed in the preliminaries sec-
tion.4

PRELIMINARY MATHEMATICAL

KNOWLEDGE

Eigenvectors are a set of vectors associated with a line-
ar system of equations, such as the ones found in the
matrix X and Y established previously.'5s Each of these
eigenvectors will have a corresponding eigenvalue. If
(v, A) is an eigenvector-eigenvalue pair of space R,
then for any i, (v;, A) is an eigenvector-eigenvalue pair
of Ri. Similarly, for any k, (kv, A) is an eigenvector-
eigenvalue pair of kR.

The K-nearest neighbors (KNN) algorithm is widely
used in pattern recognition and machine learning.:¢ It
is an example of a supervised machine learning algo-
rithm, which relies on labeled input data to learn and
then produce an appropriate output when given new
unlabeled data. These algorithms can be used to solve
classification or regression problems. KNN assumes
that data points with similar characteristics will reside
close to one another on a visual plane, such as a mani-
fold structure. Initializing a k-value will find the data
points closest to a selected starting point. For example,
if k is initialized to k = 3 and the first data point is de-
fined as x = 1, then the algorithm will find the three
most similar data points to the x-value. Ultimately, the
algorithm will find the desired points by taking the
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shortest distance between the initialized value and the
other values within the dataset. For this example, the
three shortest distances will exemplify the three near-
est neighbors and those will be outputted. This algo-
rithm proves versatile for classifying the similarities
and differences within a dataset.

LINEAR DIMENSIONALITY RE-

DUCTION

Principal Component Analysis (PCA) is a technique for
reducing the dimensionality of large datasets while
maximizing interpretability and minimizing infor-
mation loss.”” Suppose there is a dataset with points
that share similar characteristics. These points belong
in the same dimensions, but are still unique in their
own respects. If the number of characteristics
(dimensions) were reduced, then the uniqueness of
each point could be more easily observed and quanti-
fied. From this, comparisons can be made between
each data point along specific parameters to better un-
derstand their similarities and differences. For in-
stance, suppose there are three biological cells that
each share a common gene;8 however, the percentage
of their genome that consists of that gene is different.
If that percentage is the underlying parameter, then
each cell can be compared to the other to determine
relative similarity (i.e. cell 1-to-cell 2, cell 2-to-cell 3,
and so on). This will elucidate which cells are most
similar with respect to that specific dimension, yield-
ing several correlational observations amongst sam-
ples in the dataset. However, if the number of cells in-
creases linearly, then the number of possible combina-
tions will increase exponentially. This will become in-
creasingly repetitive and inefficient in the long run
with large datasets. Instead, a PCA plot is constructed,
which will convert the correlations, or lack thereof,
among all the cells into a 2-D graph. Cells that are
highly correlated will cluster together given that they
share very similar characteristics. Perhaps if some
cells are very similar in specific characteristics, they
will even overlap. These overlapping clusters are ex-
ceptionally valuable as they demonstrate great similar-
ity with respect to the dimensionality of the PCA plot.
Limited dimensionality overlap provides a compre-
hensive outlook on how some points react to only a
few parameters, which can then be explored further.
Once the clusters are identified, the cells contained
within can be examined individually to study why cor-
relations were detected by the algorithm. This method
is not exclusive to cells and can be applied to any large
dataset that needs to be refined by specific dimen-
sions. It is also important to note that the relative dis-
tances between clusters is significant. If a specific di-
mension is prioritized, then clusters spread out along
the axes of that dimension will not be as closely corre-
lated because their values will differ greatly. PCA algo-

rithms can be checked for accuracy by initializing
them with training data, then providing them with
new test data to see if they sort in a similar fashion.19 It
is critical that variance is minimized between similar
data points, but maximized for dissimilar ones.20 Es-
sentially, it is ideal to have tightly packed clusters that
are spaced out along the linear subspace. This will be
beneficial when grouping data that is similar and sepa-
rating sets that are not. PCA will render a dataset de-
void of any irrelevant features, as no extraneous di-
mensions will be included by the algorithm. A sample
PCA plot that compares three species of Iris plants is
illustrated in Figure 1.
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Figure 1. Python was used to perform PCA for
three different species of Iris plants. Axes of
similarities were growth habits and bloom times
(arbitrary units). Iris versicolor and Iris virginica ap-
pear to be similar with respect to parameters as they
clustered, while Iris setosa is different from the other
two (see Appendix A).

In order to model the manifold structure, it is im-
portant to first develop a maximum variance equation
that will segregate unrelated elements in a dataset.
Suppose that the matrix X € R~ has rows, which are
D-dimensional data points. Along this space of RP,
there must be a linear subspace where the provided
dataset has a maximum variance.2!22

var (XV) Eq.1
where V is an orthogonal D x d matrix. If d = 1, then
there is simply a unit-length vector as the orthogonal
matrix will be composed of only one column. This is
ideal for constructing the objective equation, as direc-
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tion of the maximum variation will be given by the
unit vector which contains the projected data points.

var(Xv) = E(Xv)? — (EXv)? Eq. 2
To simplify this equation, the dataset can be assumed
to be mean-centered, which will eliminate the sum of
the vectors within the one-column matrix. This can be
seen as a possible limitation of the method, as the pro-
cess of maximizing variance becomes increasingly
more complex as more elements are added to the vec-
tor.

var(Xv) = E(Xv)? Eq. 3
Note that E(Xv) is the sum of all x;V . Given that V is

an orthogonal matrix, the transpose must be taken for
X , making the equation xlv 4.

var(Xv) = z (xTv)? Eq. 4

i

In order to conduct matrix multiplication for Equation
4’s squared terms, the transpose of the terms must be
used. This transpose method is the result of multiply-
ing two vectors.

var(Xv) = Z @Tx)(x'v) Eq.5

i

var(Xv) = vT z (x| v Eq. 6

i

Equation 6 must be further maximized by setting v to
the largest corresponding eigenvector, as seen in
Equation 7. This will yield a manifold curve that is em-
bedded in high-dimensional space, while being low-
dimensional itself. This removes the sum compo-
nent and leaves the X matrix, the orthogonal matrix,
and their p respective transposes.

var(Xv) = vTXTXv Eq. 7

MANIFOLDS

This section will focus on the characteristics of a mani-
fold, as well as the ways in which the structure relates
to general topology and geometry. As mentioned pre-
viously, the goal of this exploration is to obtain a man-
ifold whose parameters lie in low-dimensions while
the actual data points are high-dimensional. It is im-
portant to remember that the feature space is RP and
the reduced space is Rd. Hence, D will be larger than d
as its dimensionality has not been reduced. This dis-
tinction and notation are important to remember be-

fore the concepts of homeomorphism can be dis-
cussed.

Homeomorphism is a method of deformation that is
unique to the study of topological structures. A home-
omorphism is a continuous function between topologi-
cal spaces that also has a continuous inverse func-
tion.23 In the field of topology, functions can be char-
acterized as objects. If two objects are homeomorphic,
they can be deformed into each other by continuous
and invertible mapping.23 To better visualize this con-
cept, imagine a donut made of clay. This donut can be
morphed into the shape of a coffee cup by moulding
the surfaces, and without cutting or adding any new
clay. These two objects are topologically equivalent. A
manifold is a topological space that resembles that of
Euclidean space, but only locally.22 For the purposes of
this exploration, visualize Euclidean space as a stand-
ard coordinate axis, much like the x-axis on the carte-
sian plane. That is to say, the vicinity of each point can
have a coordinate axis which behaves Euclidean, but
may not be. For instance, the surface of a sphere is a
manifold. For any point on the surface of the sphere,
there can exist a local coordinate system. However,
that number line will only be valid for a small section
as movement away from that section of the surface will
change the angle and thus the straight coordinate sys-
tem will fail to be of use. On account of this, manifolds
are locally homeomorphic to Euclidean space. Mathe-
matically, a d-dimensional manifold M is locally ho-
meomorphic with Rd. The local section of a manifold
can be labeled as neighborhood N for each x ¢ M, giv-
en that each neighborhood is locally homeomorphic
with Euclidean space, f : Nx -> Rd. The process of inte-
grating a manifold M in a section of Rd space is known
as embedding.24 Understanding the topology and ge-
ometry behind manifolds will allow for its accurate
algorithmic implementation.

MANIFOLD LEARNING

This section will discuss how algorithms will learn
from manifolds that are constructed with complex da-
tasets. Suppose there is a data set x;, ..., x» € RP and its
dimensionality needs to be reduced for it to be inter-
preted conclusively. PCA would not work in this case
as the data does not lie on a low-dimensional subspace
of RP. Trying to apply PCA would take far too long and
be an inefficient use of resources as multiple trial com-
binations between data points would need to be gener-
ated. Instead, the dataset should be interpreted as ly-
ing on a d-dimensional manifold embedded in RP.25 As
previously mentioned, d must be a great deal smaller
than D for dimensionality reduction to occur. For sim-
plicity, it will be assumed that the manifold is only two
-dimensional. This would yield a single coordinate sys-
tem. The manifold M can be constructed from dataset
X1, ..., Xn € RP in a single coordinate system f : N, -> Rd
as a result of y,, ..., yn € R4, where y; = f(x;).2¢ An algo-
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rithm will learn to assemble a manifold from a dataset
through this process, hence, manifold learning. An ex-
ample of a simple manifold resulting from a training
dataset is the surface curve. This curve is a two-
dimensional manifold in three-dimensional space.
This is topologically identical to that of a sphere,
where the surface can be homeomorphic to an S-
shaped curve. The curve has length and width, which
makes it two-dimensional, but it resides in three-
dimensions. That same curve can stretch to a variety of
different objects in order to demonstrate the homeo-
morphic qualities of the structures. The concept of ho-
meomorphism between these topological structures is
important because plotted datasets can yield unpre-
dictable shapes, such as a sphere. Homeomorphism
demonstrates that the visualizations can be morphed
to simplify the relationships, thus deriving meaning
from complex data. The ability for a computer to learn
a manifold from a set of points proves to be intricate
and cerebral, and has countless applications when uti-
lizing a range of datasets.

ISOMAP AND MULTIDIMENSIONAL

SCALING

Isomap is a nonlinear dimensionality reduction meth-
od, which makes it ideal for the modeling of a mani-
fold by embedding the dataset’s information into Eu-
clidean space. Specifically, Isomap computes a quasi-
isometric and low-dimensional structure by embed-
ding sets of high-dimensional data points.2” Quasi-
isometry refers to a large-scale geometrical figure’s
function that ignores the small-scale details. This al-
lows for the easy estimation of a structure's intrinsic
geometry based on a rough estimate of each data
point’s neighbors.28 Recall that in order to find a data
point’s similarities with other inputs, it must be
grouped with those inputs along a low-dimensional
plane. Isomap will employ KNN, which will allow for
the algorithm to find the points that are closest to each
other, and hence, the most similar in characteristics
relative to the parameterized axes. Points that are clos-
est together in the KNN algorithm will then be
grouped together in the final manifold. In order to em-
bed the necessary dataset into a manifold, a multidi-
mensional scaling (MDS) algorithm must first be uti-
lized.29 This is similar to Isomap, where information is
visualized by displaying the contents in a distance ma-
trix. Displaying the elements of a matrix along a set of
axes will sort the information into groups that are sim-
ilar, thereby elucidating patterns amongst the dataset.
This is another method of nonlinear dimensionality
reduction. The importance of MDS is to find interpoint
distances in the visualized dataset.3° Essentially, inter-
point distances refers to the distance between two
points randomly chosen on a plot. For this explora-
tion, the points will be randomly chosen within a simi-

lar cluster, as these points are similar with respect to
the parameters. This is done to yield MDS interpoint
distances that are similar, if not identical, to the KNN
distances in the Isomap method. Isomap will synthe-
size a manifold and construct lines between the points,
while MDS will find the distances between these
points. MDS can only be used locally as it uses Euclid-
ean geometry, which is a local coordinate system. As
the manifold curves with the addition of more data
points, the MDS will not work for comparing data
points that are further apart. Hence, MDS can only be
used to get distances of neighboring points after Iso-
map has constructed the manifold. Figure 2 showcas-
es an example of MDS comparing the presence of two
metagenomes in five different pig organs. Greater dis-
tances between data points correlates to more signifi-
cant differences with respect to the metagenomic pres-
ence. Ultimately, both methods will prove fruitful in
the exploration to generate a topological manifold
from a large dataset.
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Figure 2. Example of MDS used to plot dissimi-
larities for two arbitrary metagenomes in five
different intestinal sections of a pig. This plot
showcases the genomic presence of each metagenome
in the different sections. Points clustered together are
similar in their metagenomic composition for the two
chosen genomes. Interpoint distances are taken be-
tween each point and that organ section’s average
NMDS1 and NMDS2 value. Interpoint distance illus-
trates how deviated a point is from the other samples
in the same section.3!

Taking distances between adjacent points can be done
using Isomap and MDS as the generated distances will
be relatively small. However, data points that are fur-
ther apart will be more difficult as MDS only takes Eu-
clidean distances, which cannot be done between data
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points that are on different curved sections of a mani-
fold. Instead, distances between points on a manifold
must be taken. To better visualize this, imagine two
points on a sphere that are far apart. The distance be-
tween these points cannot be calculated, because it
would involve passing through the sphere to get the
shortest length. Instead, the distance must be taken
while still traveling along the surface of the sphere.
This will involve tracing from point A to point Z. A
computer can do this by taking the distance from point
A to some point B that is closer to point Z and also
close enough to point A, so that taking the distance
does not involve passing through the curved surface of
the sphere. Then, the distance between point B and
some other point C can be taken, and that distance will
add to the previously mentioned distance. Continuous-
ly, points will be selected that are separating point A
and point Z, until a distance is obtained between the
two points far apart. This is known as Dijkstra’s algo-
rithm.32. This algorithm can be applied to this explora-
tion to construct a manifold. For data points that are
far apart, smaller distances between those points can
be calculated and then added to yield the cumulative
distance. Having MDS calculate local distances and
Dijkstra’s algorithm quantify larger distances will al-
low for the construction of a manifold that contains all
data points.

Dijkstra’s algorithm can be mathematically expressed,
and then implemented into the Isomap and MDS algo-
rithm. If x;, xj are points on the manifold and G(x;, x;)
is the distance between them, then there is a chart f :
M -> Rdsuch that |Ir@) - ()| = 6(x.x%) .33 In this equa-
tion, the short distances across high-dimensional Eu-
clidean space will be calculated from neighboring
points. This equation will not prove useful however,
for distances that stretch far across the manifold struc-
ture. This is, again, due to the fact that the manifold is
locally linear, and the equation will have to map
through paths that have already been delineated. In-
stead, Dijkstra’s algorithm can be used to estimate the
distance from one point to another using the pre-
existing distances connecting each adjacent point34.
This will estimate the distances between distant
points, which will accompany the information already
approximated from the aforementioned equation. Now
that Isomap has been utilized, MDS can be put into
effect. Recall that MDS will calculate interpoint dis-
tances that correspond to the KNN distances calculat-
ed using Isomap. In order to use MDS, the calculated
Euclidean distances will need to be converted to a
Gramian matrix. A Gramian matrix consists of all pos-
sible inner products of another matrix.35 In this partic-
ular problem, the starting matrix is D ¢ R, If X is the
matrix of D that is needed, then B is the Gramian ma-
trix; B = XX7 where X is found through spectral de-
composition of B into UAU?.3¢ This will yield X =
UAv2, From here, PCA will again be employed to pro-
ject X onto d-dimensions given that there is a desire to
keep the data embedded in a low-dimensional mani-

fold. This will yield XV, where V & R»d is the original
matrix containing the dataset. Here, the rows are ei-
genvalues while the columns are eigenvectors. These
eigenvectors vy, ..., vq are provided by

XTX,, Eq. 8
Substitute the structural decomposition formula men-

tioned above into Equation 8 and expand terms of ma-
trix and its transpose to simplify.

EACVA,
(UAZ) (UAZ)U,- Eq.9
1 1
(A2UTUAZ)v; Eq. 10
Av; Eq. 11

when v; = e; e; is the ith standard basis vector. Hence,
XV = X[e,...eq] = [X]d, Although this seems quite syn-
tactical and complex, it signifies that the dimensionali-
ty of the subspace in which the manifold lies is exactly
where the matrix X lies. Hence, MDS can be used to
find the dimensionality of the manifold space. Howev-
er, this method of MDS is limited in its capabilities
since D’s distances are merely an approximation. If the
approximation deviates from Isomap’s approxima-
tions too greatly, this will prevent the formation of the
Gramian matrix. Improving the algorithm to accom-
modate for this mistake can serve as a future extension
to this exploration. From these calculations, the dis-
tances between data points on a manifold will be ap-
proximated, which will prove useful when interpreting
the relationship between the dataset’s elements. Fig-
ure 3 is a plot of both Isomap, and MDS that utilizes
the Dijkstra algorithm. This gives Figure 3 the capa-
bility to construct a three-dimensional manifold with
similar points being close together.

Isomap (0.55 sec) MDS (1.8 sec)

»®

Figure 3. A sample plot of 1000 points reduced
to three dimensions of x, y, and z in both Iso-
map and MDS with computer generation time
displayed. Points consist of arbitrary values in three-
dimensions in range of figure size. Isomap is the mani-
fold containing all data points while MDS views it
from a different angle to capture its depth. Points that
are close together are similar with respect to the arbi-
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trary parameters of this database plot. Similar/local
points are highlighted in similar colours for easy iden-
tification of their shared characteristics (see Appendix
B).

APPLICATIONS

Isomap and MDS are incredible tools to use in the
modeling of manifolds from large and complex da-
tasets. The Isomap effectively reduces the dimension-
ality of the provided datasets, which allows the mani-
fold to be derived with ease. Nevertheless, this process
is not perfect. These algorithms attempt to reduce di-
mensionality in order to limit the noise in the dataset
while maintaining relevant parameters. As a way to
prevent losing all vital information, the algorithm may
be “generous” in the sense that not all parameters that
are deemed irrelevant are removed. Ultimately, some
inapt information will be included in the final model,
so the process is not entirely efficient. An advantage to
using Isomap over MDS is the time difference. Isomap
typically takes less than half the time of MDS, which is
advantageous for widespread future applications
where computers are expected to quickly find relation-
ships in large-scale datasets.3” For instance, suppose
military personnel wanted to find the exact location of
a specific target from voice data.38 Isomap would be
ideal for this situation as it is relatively fast and would
segregate the audio samples based on similar charac-
teristics, such as languages and speech patterns. This
could then be cross-referenced with collected audio
from nearby transponders and ultimately assist the
military in triangulating the target location.38 In differ-
ent circumstances, MDS may be ideal when analyzing
voting data and predicting the outcome of elec-
tions.3940 An MDS algorithm could construct a visuali-
zation of voters by parameterizing their voting history.
This would work to segregate groups with similar in-
terests. Those that are grouped closely together with
small neighboring distances will likely vote in a similar
fashion. This can be useful in determining which
groups are firm in their position and others who are
relatively lenient based on their relative position along
the axes. From this, electoral voting campaigns can
target specific demographics that are elucidated from
this process.4t These are merely a few applications of
manifold learning, an incredible tool that will likely
see tremendous growth in research-oriented fields.

LIMITATIONS

A number of limitations occurred throughout this lit-
erature review, all of which were a result of the mani-
fold learning method. As mentioned in the Isomap and
multidimensional scaling section, the Isomap and
MDS distances cannot deviate too much from one an-

other, or else a Gramian matrix will not form. This was
conclusive across all papers, but was rather vague and
unexplained, leading to more questions. The Jupyter
Notebook simulations in Figure 3 were created using
an open source dataset, but it is questionable what the
output would have been if the KNN and MDS distanc-
es did not correspond. The cited literature also did not
make note of this dilemma, or how it could be re-
solved. Additionally, the papers discussed that the
KNN and MDS values can only deviate slightly to yield
an adequate Gramian matrix. This is yet again a vague
phrase that begs an explanation. What amount or per-
cent can the results of the two methods deviate in or-
der to still yield a functioning Gramian matrix? In or-
der to improve the algorithm for future use, and com-
bat the dilemma of different KNN and MDS distances,
a thorough understanding of the underlying causes
must be explored. An additional limitation that arose
during this exploration concerned the foundational
concept of dimensionality reduction. Many papers
noted that computers will reduce dimensions some-
what sparingly to avoid the loss of vital information.
Not all parameters that are deemed irrelevant are re-
moved. This is simple, but rather vague from the per-
spective of programming. How do algorithms rank ir-
relevant pieces of information to preserve knowledge
from the dataset? Quantifying the ideas behind this
concept would be beneficial to further understand the
nuances of the manifold learning algorithm. Moreover,
it would be favourable to provide information on the
handling of irrelevant information before it is integrat-
ed into the final model. Addressing these vagaries
would significantly improve ideas around this concept.
Although there are some limitations in this literature
review, the general concepts of manifold learning were
easily understood and appear to be extraordinary in
their future implications.

CONCLUSION

This exploration on manifold learning has proved to
be advantageous as it works to untangle the complexi-
ties behind geometric interpretations of data, while
illuminating the benefits that the procedure can pro-
vide to data analytics. Though manifold learning has
become an increasingly popular area of study within
machine learning, much is still unknown. This paper
explored only two methodologies of manifold learning:
Isomap and multidimensional scaling. This is not an
exhaustive list as many more exist, and continue to
develop. Testing a multitude of algorithms may pro-
vide different perspectives and results, which would
improve scientific understanding in this area of disci-
pline. Utilizing more real-world data sets would also
be of great benefit. It is important to train algorithms
to determine whether they provide sensible outcomes,
but real-world data should also be used to test if the
methodologies can have widespread applications. Per-



Sciential | December 2020

haps most real-world datasets do not lie along an em-
bedded manifold. Realizing this now and adjusting the
development of these algorithms would be the best
option. Manifold learning as a methodology proves to
be a promising resource in elucidating meaningful re-
lationships from otherwise complex datasets.
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