
ACADEMIC REVIEW 

rameters can lead to issues with clarity. This can make 
subgrouping, and thus making informed conclusions, 
difficult.3 On account of this, mathematicians have de-
veloped various techniques in alleviating inessential 
dimensions in an effort to make machine learning al-
gorithms more efficient. This process is known as di-
mensionality reduction and is crucial to understand 
before delving into mathematical modeling of complex 
data.4 

 
Dimensionality reduction aims to simplify datasets 
with the hopes of making them more efficient for ma-
chine learning algorithms. Dimensionality reduction 
can assist with scientific understanding by visualizing 
complex data. For example, if a dataset consists of 50 
dimensions, then there are 50 attributes categorizing 
each individual point within that collection. This 
makes the process of finding meaningful relationships 
very challenging as a great deal of irrelevant infor-
mation must be filtered first. This irrelevant infor-
mation is sometimes referred to as noise, large 
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The Value of Manifold Learning Algorithms in Simplifying 
Complex Datasets for More Efficacious Analysis 

Significant advances in the field of machine learning 
can be attributed to the readily available high-quality 
datasets that are vital for training algorithms.1 These 
datasets play an integral role in the development of 
machine learning algorithms that attempt to predict 
outcomes. This is done by providing computers with 
large and complex datasets, from which they can de-
duce patterns. This knowledge of patterns can be used 
to predict future outcomes. An instance of predictive 
modelling is in annual weather prediction. Climatolo-
gists and meteorologists train machine learning algo-
rithms with previous weather data to recognize pat-
terns2. This knowledge is then used to forecast upcom-
ing weather. This predictive process is both a benefit 
and a burden. Although large sets of data provide algo-
rithms with a breadth of information, they also hinder 
their efficiency with irrelevant or misleading details. 
For example, crowding datasets with unnecessary pa-
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Advances in manifold learning have proven to be of great benefit in reducing the dimensionality of large complex 
datasets. Elements in an intricate dataset will typically belong in high-dimensional space as the number of 
individual features or independent variables will be extensive. However, these elements can be integrated into a 
low-dimensional manifold with well-defined parameters. By constructing a low-dimensional manifold and 
embedding it into high-dimensional feature space, the dataset can be simplified for easier interpretation. In spite 
of this elemental dimensionality reduction, the dataset’s constituents do not lose any information, but rather 
filter it with the hopes of elucidating the appropriate knowledge. This paper will explore the importance of this 
method of data analysis, its applications, and its extensions into topological data analysis.  
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Suppose you wished to determine the probability of a basketball player scoring a three-point shot. Analyzing pre-
vious scoring data would guide you in arriving at a logical prediction. Now, imagine that you aimed to predict the 
weather. Analyzing previous weather data may not be nearly as useful given that there are an unfathomable num-
ber of logged entries that each encompass a multitude of characteristics such as temperature, wind speed, season, 
etc. An alternative to inefficiently relating data points based on a few overlapping characteristics would be to 
simply reduce the complexity of the entire set. Rather than predicting the weather based on dozens or hundreds 
of factors, you would only utilize the few that are the most impactful. This is manifold learning – reducing the 
complexity of data sets for a more efficient examination. Many algorithms are currently being developed and im-
proved to limit characteristics of data entries, while retaining central information. These simplified entries are 
graphed on a smooth curve and connected. Points that are crowded will be strongly correlated; hence, illuminat-
ing a hidden pattern. This paper will explore the importance of manifold learning in data analysis and its applica-
tions. 
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amounts of additional or meaningless information.5 If 
a dimensionality reduction algorithm could be used to 
convert 50 dimensions into 3, then it would expedite 
the process of visualizing connections between data 
points. Apart from visualization, dimensionality re-
duction may also assist in elucidating underlying forc-
es behind complex datasets. For example, dimension-
ality reduction can be used to improve the geophysical 
log data that classifies crystalline rocks.6 Log functions 
are used to classify rock types after the machines 
measure their characteristics, such as surface area, 
density, porosity, etc. However, many of these log 
functions may not be of use as several different types 
of rocks have overlapping characteristics. Shale and 
claystone, for example, are very similar in grain size.7 
Using log functions that include similar characteris-
tics, such as grain size, when differentiating between 
shale and claystone would be redundant. With the use 
of dimensionality reduction algorithms, reduced-log 
sets that are the most important to the classification 
process can be used instead. Furthermore, providing 
feedback to the original algorithm can extend the ca-
pabilities of this technique. Machine learning will al-
low the algorithm to optimize itself by learning from 
the instances in which it was correct or mistaken.8 
This will allow it to make more statistically advanta-
geous decisions and prioritize what reduced-log func-
tions should be provided to the geological machinery. 
This instance of dimensionality reduction in machine 
learning algorithms exemplifies the importance of 
simplified datasets. 
 
The simplification of large datasets by dimensionality 
reduction serves to remove repetitive and overlapping 
information. Take, for example, a large dataset that is 
governed by 100 dimensions. Given the number of pa-
rameters, there is bound to be overlap in the data 
points. It is possible that out of 10,000 elements, 
1,000 will mirror the same behaviour along 15 dimen-
sions. If the goal is to find relationships between data 
points, then continuous overlapping between parame-
ters will not show any real connection. This is an in-
herent inefficiency in the machine learning system and 
can be undone by extracting the integral parameters 
and excluding derivatives of the same dimensions.9 It 
is important to note that reducing the dimensions does 
not inherently limit the data itself. Suppose there is a 
large data set of one million participants and one hun-
dred dimensions that indicate character traits. If the 
dimensions are reduced to three traits, such as integri-
ty, honesty, and responsibility, 97 dimensions still re-
main for each data point. However, the additional 97 
dimensions are virtually emphasized because the sys-
tem only visualizes relationships between participants 
for the three traits. Furthermore, there could possibly 
be infinite dimensions to the dataset, but only one 
hundred were selected initially, and three left after the 
reduction. Therefore, the potential classification of the 
dataset is not bound by the three dimensions set by 
the algorithm. This high-dimensional space that the 

data could belong to is known as the feature space.10 
The low-dimensional space that the algorithm reduces 
the dataset to reflects the applied parameters. The 
manifold structure that will soon be created will im-
port aspects of both high and low-dimensional space, 
and will find meaningful relationships from large sets 
of data.  

14 

NOTATION 
► The high-dimensional points will be sectioned in 

matrix X, where the ith row is xi (x1, x2, …, xn). Here, 
n is the number of points in the dataset and can 
vary widely. Similarly, the low-dimensional param-
eters will be y1, y2, …, yn within the matrix Y.11 

► D is denoted as the dimensionality of the dataset 
before the reduction algorithm is applied, located in 
RD space. Resultantly, d is the dimensionality of the 
deriving manifold.12 

► (vi, λi) are eigenvector-eigenvalue pairs for i = 1, …, 
n. From this λ1  ≥ λ2 ≥ … ≥ λn. If v1, …, vd are the d 
eigenvectors in high-dimensional space, then vn-d+1, 
…, vn represent the low-dimensional d eigenvectors. 
The eigenvectors will change due to the reduced 
dimensionality of data. The notion of eigenvectors 
will be elaborated on in the preliminaries section.13 

► k is the number of nearest neighbors while N(i) is 
the set of k-nearest neighbors of xi. This algorithmic 
concept will be discussed in the preliminaries sec-
tion.14 

PRELIMINARY MATHEMATICAL 
KNOWLEDGE 

Eigenvectors are a set of vectors associated with a line-
ar system of equations, such as the ones found in the 
matrix X and Y established previously.15 Each of these 
eigenvectors will have a corresponding eigenvalue. If 
(v, λ) is an eigenvector-eigenvalue pair of space R, 
then for any i, (vi, λ) is an eigenvector-eigenvalue pair 
of Ri. Similarly, for any k, (kv, λ) is an eigenvector-
eigenvalue pair of kR. 
 
The K-nearest neighbors (KNN) algorithm is widely 
used in pattern recognition and machine learning.16 It 
is an example of a supervised machine learning algo-
rithm, which relies on labeled input data to learn and 
then produce an appropriate output when given new 
unlabeled data. These algorithms can be used to solve 
classification or regression problems. KNN assumes 
that data points with similar characteristics will reside 
close to one another on a visual plane, such as a mani-
fold structure. Initializing a k-value will find the data 
points closest to a selected starting point. For example, 
if k is initialized to k = 3 and the first data point is de-
fined as x = 1, then the algorithm will find the three 
most similar data points to the x-value. Ultimately, the 
algorithm will find the desired points by taking the 

Sciential | December 2020



rithms can be checked for accuracy by initializing 
them with training data, then providing them with 
new test data to see if they sort in a similar fashion.19 It 
is critical that variance is minimized between similar 
data points, but maximized for dissimilar ones.20 Es-
sentially, it is ideal to have tightly packed clusters that 
are spaced out along the linear subspace. This will be 
beneficial when grouping data that is similar and sepa-
rating sets that are not. PCA will render a dataset de-
void of any irrelevant features, as no extraneous di-
mensions will be included by the algorithm. A sample 
PCA plot that compares three  species of Iris plants is 
illustrated in Figure 1. 

Figure 1. Python was used to perform PCA for 
three different species of Iris plants. Axes of 
similarities were growth habits and bloom times 
(arbitrary units). Iris versicolor and Iris virginica ap-
pear to be similar with respect to parameters as they 
clustered, while Iris setosa is different from the other 
two (see Appendix A). 
 
In order to model the manifold structure, it is im-
portant to first develop a maximum variance equation 
that will segregate unrelated elements in a dataset. 
Suppose that the matrix X ε RnxD has rows, which are 
D-dimensional data points. Along this space of RD, 
there must be a linear subspace where the provided 
dataset has a maximum variance.21,22 

 
 

 
where V is an orthogonal D x d matrix. If d = 1, then 
there is simply a unit-length vector as the orthogonal 
matrix will be composed of only one column. This is 
ideal for constructing the objective equation, as direc-

shortest distance between the initialized value and the 
other values within the dataset. For this example, the 
three shortest distances will exemplify the three near-
est neighbors and those will be outputted. This algo-
rithm proves versatile for classifying the similarities 
and differences within a dataset. 
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LINEAR DIMENSIONALITY RE-
DUCTION 

Principal Component Analysis (PCA) is a technique for 
reducing the dimensionality of large datasets while 
maximizing interpretability and minimizing infor-
mation loss.17 Suppose there is a dataset with points 
that share similar characteristics. These points belong 
in the same dimensions, but are still unique in their 
own respects. If the number of characteristics 
(dimensions) were reduced, then the uniqueness of 
each point could be more easily observed and quanti-
fied. From this, comparisons can be made between 
each data point along specific parameters to better un-
derstand their similarities and differences. For in-
stance, suppose there are three biological cells that 
each share a common gene;18 however, the percentage 
of their genome that consists of that gene is different. 
If that percentage is the underlying parameter, then 
each cell can be compared to the other to determine 
relative similarity (i.e.  cell 1-to-cell 2, cell 2-to-cell 3, 
and so on). This will elucidate which cells are most 
similar with respect to that specific dimension, yield-
ing several correlational observations amongst sam-
ples in the dataset. However, if the number of cells in-
creases linearly, then the number of possible combina-
tions will increase exponentially. This will become in-
creasingly repetitive and inefficient in the long run 
with large datasets. Instead, a PCA plot is constructed, 
which will convert the correlations, or lack thereof, 
among all the cells into a 2-D graph. Cells that are 
highly correlated will cluster together given that they 
share very similar characteristics. Perhaps if some 
cells are very similar in specific characteristics, they 
will even overlap. These overlapping clusters are ex-
ceptionally valuable as they demonstrate great similar-
ity with respect to the dimensionality of the PCA plot. 
Limited dimensionality overlap provides a compre-
hensive outlook on how some points react to only a 
few parameters, which can then be explored further. 
Once the clusters are identified, the cells contained 
within can be examined individually to study why cor-
relations were detected by the algorithm. This method 
is not exclusive to cells and can be applied to any large 
dataset that needs to be refined by specific dimen-
sions. It is also important to note that the relative dis-
tances between clusters is significant. If a specific di-
mension is prioritized, then clusters spread out along 
the axes of that dimension will not be as closely corre-
lated because their values will differ greatly. PCA algo-

Eq. 1 
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tion of the maximum variation will be given by the 
unit vector which contains the projected data points. 
 
 
 
To simplify this equation, the dataset can be assumed 
to be mean-centered, which will eliminate the sum of 
the vectors within the one-column matrix. This can be 
seen as a possible limitation of the method, as the pro-
cess of maximizing variance becomes increasingly 
more complex as more elements are added to the vec-
tor. 

 
 

 
Note that  is the sum of all        . Given that V  is 
an orthogonal matrix, the transpose must be taken for 
     , making the equation 14. 
 
 
 
 
 
In order to conduct matrix multiplication for Equation 
4’s squared terms, the transpose of the terms must be 
used.14 This transpose method is the result of multiply-
ing two vectors. 

 
 
 
 
 
 
 
 
 

Equation 6 must be further maximized by setting v to 
the largest corresponding eigenvector, as seen in 
Equation 7. This will yield a manifold curve that is em-
bedded in high-dimensional space, while being low-
dimensional itself. This removes the sum compo-
nent and leaves the  matrix, the orthogonal matrix, 
and their respective transposes. 

 
 

fore the concepts of homeomorphism can be dis-
cussed. 
 
Homeomorphism is a method of deformation that is 
unique to the study of topological structures. A home-
omorphism is a continuous function between topologi-
cal spaces that also has a continuous inverse func-
tion.23 In the field of topology, functions can be char-
acterized as objects. If two objects are homeomorphic, 
they can be deformed into each other by continuous 
and invertible mapping.23 To better visualize this con-
cept, imagine a donut made of clay. This donut can be 
morphed into the shape of a coffee cup by moulding 
the surfaces, and without cutting or adding any new 
clay. These two objects are topologically equivalent. A 
manifold is a topological space that resembles that of 
Euclidean space, but only locally.22 For the purposes of 
this exploration, visualize Euclidean space as a stand-
ard coordinate axis, much like the x-axis on the carte-
sian plane. That is to say, the vicinity of each point can 
have a coordinate axis which behaves Euclidean, but 
may not be. For instance, the surface of a sphere is a 
manifold. For any point on the surface of the sphere, 
there can exist a local coordinate system. However, 
that number line will only be valid for a small section 
as movement away from that section of the surface will 
change the angle and thus the straight coordinate sys-
tem will fail to be of use. On account of this, manifolds 
are locally homeomorphic to Euclidean space. Mathe-
matically, a d-dimensional manifold M is locally ho-
meomorphic with Rd. The local section of a manifold 
can be labeled as neighborhood Nx for each x ε M, giv-
en that each neighborhood is locally homeomorphic 
with Euclidean space, f : Nx -> Rd. The process of inte-
grating a manifold M in a section of Rd space is known 
as embedding.24 Understanding the topology and ge-
ometry behind manifolds will allow for its accurate 
algorithmic implementation.  
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Eq. 2 

Eq. 3 

Eq. 4 

Eq. 5 

Eq. 6 

Eq. 7 

MANIFOLDS 

This section will focus on the characteristics of a mani-
fold, as well as the ways in which the structure relates 
to general topology and geometry. As mentioned pre-
viously, the goal of this exploration is to obtain a man-
ifold whose parameters lie in low-dimensions while 
the actual data points are high-dimensional. It is im-
portant to remember that the feature space is RD and 
the reduced space is Rd. Hence, D will be larger than d 
as its dimensionality has not been reduced. This dis-
tinction and notation are important to remember be-

MANIFOLD LEARNING 

This section will discuss how algorithms will learn 
from manifolds that are constructed with complex da-
tasets. Suppose there is a data set x1, …, xn ε RD and its 
dimensionality needs to be reduced for it to be inter-
preted conclusively. PCA would not work in this case 
as the data does not lie on a low-dimensional subspace 
of RD. Trying to apply PCA would take far too long and 
be an inefficient use of resources as multiple trial com-
binations between data points would need to be gener-
ated. Instead, the dataset should be interpreted as ly-
ing on a d-dimensional manifold embedded in RD.25 As 
previously mentioned, d must be a great deal smaller 
than D for dimensionality reduction to occur. For sim-
plicity, it will be assumed that the manifold is only two
-dimensional. This would yield a single coordinate sys-
tem. The manifold M can be constructed from dataset 
x1, …, xn ε RD in a single coordinate system f : Nx -> Rd 
as a result of y1, …, yn ε Rd, where yi = f(xi).26 An algo-
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rithm will learn to assemble a manifold from a dataset 
through this process, hence, manifold learning. An ex-
ample of a simple manifold resulting from a training 
dataset is the surface curve. This curve is a two-
dimensional manifold in three-dimensional space. 
This is topologically identical to that of a sphere, 
where the surface can be homeomorphic to an S-
shaped curve. The curve has length and width, which 
makes it two-dimensional, but it resides in three-
dimensions. That same curve can stretch to a variety of 
different objects in order to demonstrate the homeo-
morphic qualities of the structures. The concept of ho-
meomorphism between these topological structures is 
important because plotted datasets can yield unpre-
dictable shapes, such as a sphere. Homeomorphism 
demonstrates that the visualizations can be morphed 
to simplify the relationships, thus deriving meaning 
from complex data. The ability for a computer to learn 
a manifold from a set of points proves to be intricate 
and cerebral, and has countless applications when uti-
lizing a range of datasets. 

lar cluster, as these points are similar with respect to 
the parameters. This is done to yield MDS interpoint 
distances that are similar, if not identical, to the KNN 
distances in the Isomap method. Isomap will synthe-
size a manifold and construct lines between the points, 
while MDS will find the distances between these 
points. MDS can only be used locally as it uses Euclid-
ean geometry, which is a local coordinate system. As 
the manifold curves with the addition of more data 
points, the MDS will not work for comparing data 
points that are further apart. Hence, MDS can only be 
used to get distances of neighboring points after Iso-
map has constructed the manifold. Figure 2 showcas-
es an example of MDS comparing the presence of two 
metagenomes in five different pig organs. Greater dis-
tances between data points correlates to more signifi-
cant differences with respect to the metagenomic pres-
ence. Ultimately, both methods will prove fruitful in 
the exploration to generate a topological manifold 
from a large dataset. 

Figure 2. Example of MDS used to plot dissimi-
larities for two arbitrary metagenomes in five 
different intestinal sections of a pig. This plot 
showcases the genomic presence of each metagenome 
in the different sections. Points clustered together are 
similar in their metagenomic composition for the two 
chosen genomes. Interpoint distances are taken be-
tween each point and that organ section’s average 
NMDS1 and NMDS2 value. Interpoint distance illus-
trates how deviated a point is from the other samples 
in the same section.31 

 

Taking distances between adjacent points can be done 
using Isomap and MDS as the generated distances will 
be relatively small. However, data points that are fur-
ther apart will be more difficult as MDS only takes Eu-
clidean distances, which cannot be done between data 

ISOMAP AND MULTIDIMENSIONAL 
SCALING 

Isomap is a nonlinear dimensionality reduction meth-
od, which makes it ideal for the modeling of a mani-
fold by embedding the dataset’s information into Eu-
clidean space. Specifically, Isomap computes a quasi-
isometric and low-dimensional structure by embed-
ding sets of high-dimensional data points.27 Quasi-
isometry refers to a large-scale geometrical figure’s 
function that ignores the small-scale details. This al-
lows for the easy estimation of a structure's intrinsic 
geometry based on a rough estimate of each data 
point’s neighbors.28 Recall that in order to find a data 
point’s similarities with other inputs, it must be 
grouped with those inputs along a low-dimensional 
plane. Isomap will employ KNN, which will allow for 
the algorithm to find the points that are closest to each 
other, and hence, the most similar in characteristics 
relative to the parameterized axes. Points that are clos-
est together in the KNN algorithm will then be 
grouped together in the final manifold. In order to em-
bed the necessary dataset into a manifold, a multidi-
mensional scaling (MDS) algorithm must first be uti-
lized.29 This is similar to Isomap, where information is 
visualized by displaying the contents in a distance ma-
trix. Displaying the elements of a matrix along a set of 
axes will sort the information into groups that are sim-
ilar, thereby elucidating patterns amongst the dataset. 
This is another method of nonlinear dimensionality 
reduction. The importance of MDS is to find interpoint 
distances in the visualized dataset.30 Essentially, inter-
point distances refers to the distance between two 
points randomly chosen on a plot. For this explora-
tion, the points will be randomly chosen within a simi-
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points that are on different curved sections of a mani-
fold. Instead, distances between points on a manifold 
must be taken. To better visualize this, imagine two 
points on a sphere that are far apart. The distance be-
tween these points cannot be calculated, because it 
would involve passing through the sphere to get the 
shortest length. Instead, the distance must be taken 
while still traveling along the surface of the sphere. 
This will involve tracing from point A to point Z. A 
computer can do this by taking the distance from point 
A to some point B that is closer to point Z and also 
close enough to point A, so that taking the distance 
does not involve passing through the curved surface of 
the sphere. Then, the distance between point B and 
some other point C can be taken, and that distance will 
add to the previously mentioned distance. Continuous-
ly, points will be selected that are separating point A 
and point Z, until a distance is obtained between the 
two points far apart. This is known as Dijkstra’s algo-
rithm.32. This algorithm can be applied to this explora-
tion to construct a manifold. For data points that are 
far apart, smaller distances between those points can 
be calculated and then added to yield the cumulative 
distance. Having MDS calculate local distances and 
Dijkstra’s algorithm quantify larger distances will al-
low for the construction of a manifold that contains all 
data points. 
 
Dijkstra’s algorithm can be mathematically expressed, 
and then implemented into the Isomap and MDS algo-
rithm. If xi, xj are points on the manifold and G(xi, xj) 
is the distance between them, then there is a chart f : 
M -> Rd, such that                                 .33 In this equa-
tion, the short distances across high-dimensional Eu-
clidean space will be calculated from neighboring 
points. This equation will not prove useful however, 
for distances that stretch far across the manifold struc-
ture. This is, again, due to the fact that the manifold is 
locally linear, and the equation will have to map 
through paths that have already been delineated. In-
stead, Dijkstra’s algorithm can be used to estimate the 
distance from one point to another using the pre-
existing distances connecting each adjacent point34. 
This will estimate the distances between distant 
points, which will accompany the information already 
approximated from the aforementioned equation. Now 
that Isomap has been utilized, MDS can be put into 
effect. Recall that MDS will calculate interpoint dis-
tances that correspond to the KNN distances calculat-
ed using Isomap. In order to use MDS, the calculated 
Euclidean distances will need to be converted to a 
Gramian matrix. A Gramian matrix consists of all pos-
sible inner products of another matrix.35 In this partic-
ular problem, the starting matrix is D ε Rnxn. If X is the 
matrix of D that is needed, then B is the Gramian ma-
trix; B = XXT, where X  is found through spectral de-
composition of B into UΛUT.36 This will yield X = 
UΛ1/2. From here, PCA will again be employed to pro-
ject X onto d-dimensions given that there is a desire to 
keep the data embedded in a low-dimensional mani-

fold. This will yield XV, where V ε Rnxd is the original 
matrix containing the dataset. Here, the rows are ei-
genvalues while the columns are eigenvectors. These 
eigenvectors v1, … , vd are provided by 
 
 
 
Substitute the structural decomposition formula men-
tioned above into Equation 8 and expand terms of ma-
trix and its transpose to simplify. 
 
 
 
 
 
 
 
 
when vi = ei, ei is the ith standard basis vector. Hence, 
XV = X[e1…ed] = [X]nxd. Although this seems quite syn-
tactical and complex, it signifies that the dimensionali-
ty of the subspace in which the manifold lies is exactly 
where the matrix X lies. Hence, MDS can be used to 
find the dimensionality of the manifold space. Howev-
er, this method of MDS is limited in its capabilities 
since D’s distances are merely an approximation. If the 
approximation deviates from Isomap’s approxima-
tions too greatly, this will prevent the formation of the 
Gramian matrix. Improving the algorithm to accom-
modate for this mistake can serve as a future extension 
to this exploration. From these calculations, the dis-
tances between data points on a manifold will be ap-
proximated, which will prove useful when interpreting 
the relationship between the dataset’s elements. Fig-
ure 3 is a plot of both Isomap, and MDS that utilizes 
the Dijkstra algorithm. This gives Figure 3 the capa-
bility to construct a three-dimensional manifold with 
similar points being close together. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A sample plot of 1000 points reduced 
to three dimensions of x, y, and z in both Iso-
map and MDS with  computer generation time 
displayed. Points consist of arbitrary values in three-
dimensions in range of figure size. Isomap is the mani-
fold containing all data points while MDS views it 
from a different angle to capture its depth. Points that 
are close together are similar with respect to the arbi-
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Eq. 8 

Eq. 9 

Eq. 10 

Eq. 11 
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trary parameters of this database plot. Similar/local 
points are highlighted in similar colours for easy iden-
tification of their shared characteristics (see Appendix 
B). 

other, or else a Gramian matrix will not form. This was 
conclusive across all papers, but was rather vague and 
unexplained, leading to more questions. The Jupyter 
Notebook simulations in Figure 3 were created using 
an open source dataset, but it is questionable what the 
output would have been if the KNN and MDS distanc-
es did not correspond. The cited literature also did not 
make note of this dilemma, or how it could be re-
solved. Additionally, the papers discussed that the 
KNN and MDS values can only deviate slightly to yield 
an adequate Gramian matrix. This is yet again a vague 
phrase that begs an explanation. What amount or per-
cent can the results of the two methods deviate in or-
der to still yield a functioning Gramian matrix? In or-
der to improve the algorithm for future use, and com-
bat the dilemma of different KNN and MDS distances, 
a thorough understanding of the underlying causes 
must be explored. An additional limitation that arose 
during this exploration concerned the foundational 
concept of dimensionality reduction. Many papers 
noted that computers will reduce dimensions some-
what sparingly to avoid the loss of vital information. 
Not all parameters that are deemed irrelevant are re-
moved. This is simple, but rather vague from the per-
spective of programming. How do algorithms rank ir-
relevant pieces of information to preserve knowledge 
from the dataset? Quantifying the ideas behind this 
concept would be beneficial to further understand the 
nuances of the manifold learning algorithm. Moreover, 
it would be favourable  to provide information on the 
handling of irrelevant information before it is integrat-
ed into the final model. Addressing these vagaries 
would significantly improve ideas around this concept. 
Although there are some limitations in this literature 
review, the general concepts of manifold learning were 
easily understood and appear to be extraordinary in 
their future implications. 

APPLICATIONS 

Isomap and MDS are incredible tools to use in the 
modeling of manifolds from large and complex da-
tasets. The Isomap effectively reduces the dimension-
ality of the provided datasets, which allows the mani-
fold to be derived with ease. Nevertheless, this process 
is not perfect. These algorithms attempt to reduce di-
mensionality in order to limit the noise in the dataset 
while maintaining relevant parameters. As a way to 
prevent losing all vital information, the algorithm may 
be “generous” in the sense that not all parameters that 
are deemed irrelevant are removed. Ultimately, some 
inapt information will be included in the final model, 
so the process is not entirely efficient. An advantage to 
using Isomap over MDS is the time difference. Isomap 
typically takes less than half the time of MDS, which is 
advantageous for widespread future applications 
where computers are expected to quickly find relation-
ships in large-scale datasets.37 For instance, suppose 
military personnel wanted to find the exact location of 
a specific target from voice data.38 Isomap would be 
ideal for this situation as it is relatively fast and would 
segregate the audio samples based on similar charac-
teristics, such as languages and speech patterns. This 
could then be cross-referenced with collected audio 
from nearby transponders and ultimately assist the 
military in triangulating the target location.38 In differ-
ent circumstances, MDS may be ideal when analyzing 
voting data and predicting the outcome of elec-
tions.39,40 An MDS algorithm could construct a visuali-
zation of voters by parameterizing their voting history. 
This would work to segregate groups with similar in-
terests. Those that are grouped closely together with 
small neighboring distances will likely vote in a similar 
fashion. This can be useful in determining which 
groups are firm in their position and others who are 
relatively lenient based on their relative position along 
the axes. From this, electoral voting campaigns can 
target specific demographics that are elucidated from 
this process.41 These are merely a few applications of 
manifold learning, an incredible tool that will likely 
see tremendous growth in research-oriented fields. 

LIMITATIONS 

A number of limitations occurred throughout this lit-
erature review, all of which were a result of the mani-
fold learning method. As mentioned in the Isomap and 
multidimensional scaling section, the Isomap and 
MDS distances cannot deviate too much from one an-

CONCLUSION 

This exploration on manifold learning has proved to 
be advantageous as it works to untangle the complexi-
ties behind geometric interpretations of data, while 
illuminating the benefits that the procedure can pro-
vide to data analytics. Though manifold learning has 
become an increasingly popular area of study within 
machine learning, much is still unknown. This paper 
explored only two methodologies of manifold learning: 
Isomap and multidimensional scaling. This is not an 
exhaustive list as many more exist, and continue to 
develop. Testing a multitude of algorithms may pro-
vide different perspectives and results, which would 
improve scientific understanding in this area of disci-
pline. Utilizing more real-world data sets would also 
be of great benefit. It is important to train algorithms 
to determine whether they provide sensible outcomes, 
but real-world data should also be used to test if the 
methodologies can have widespread applications. Per-
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haps most real-world datasets do not lie along an em-
bedded manifold. Realizing this now and adjusting the 
development of these algorithms would be the best 
option. Manifold learning as a methodology proves to 
be a promising resource in elucidating meaningful re-
lationships from otherwise complex datasets. 
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