Current Understanding of Europa and Potential in Upcoming Exploration

Authors

  • James Lai McMaster University

Keywords:

Europa, astrobiology, space exploration, Jupiter, Mars

Abstract

Europa, one of Jupiter’s moons, has been an object of interest to astrobiologists, as well as planetary scientists in general, for some time. In particular, Europa has drawn interest due to evidence suggesting the presence of a subsurface liquid water ocean, which could potentially support life. Only recently, however, has concrete planning begun for exploration of this celestial body. These missions are described, followed by an overview of selected areas of research on Europa relevant to astrobiologists, along with discussion of planned investigations for upcoming missions to explore Europa. Finally, based on these potential benefits to scientific knowledge, it is argued that exploration of icy moons such as Europa should remain a priority in that they provide opportunities for the study of astrobiology that cannot be offered by the current focus of most study, Mars.

References

Alexander, C., Carlson, R., Consolmagno, G., Greeley, R., and Morrison, D., 2009. The exploration history of Europa. In: R. T. Pappalardo, W. B. McKinnon, K. Khurana, eds. 2009. Europa. Tucson: University of Arizona Press. pp.3-26.

De Blasio, F. V., 2014. Possible erosion marks of bottom oceanic currents in the northern lowlands of Mars. Planetary and Space Science, 93, pp.10-21.

Bray, V. J., Collins, G. S., Morgan, J. V., Melosh, J., and Schenk, P. M., 2014. Hydrocode simulation of Ganymede and Europa cratering trends – how thick is Europa’s crust? Icarus, 231, pp.394-406.

Grasset, O., Dougherty, M. K., Coustenis, A., Bunce, E. J., Erd, C., Titov, D., Blanc, M., Coates, A., Drossart, P., Fletcher, L. N., Hussmann, H., Jaumann, R., Krupp, N., Lebreton, J.-P., Prieto-Ballesteros, O., Tortora, P., Tosi, F., and Van Hoolst, T. 2013. JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science, 78, pp.1-21.

Heggy, E., Scabbia, G., Bruzzone, L., Pappalardo, R. T., 2017. Radar probing of Jovian icy moons: understanding subsurface water and structure detectability in the JUICE and Europa missions. Icarus, 285, pp.237-251.

Hoppa, G. V., Tufts, R., Greenberg, R., and Geissler, P. E., 1999. Formation of cycloidal features on Europa. Science, 285(5435), pp.1899-1902.

Hussmann, H., Spohn, T., and Wierczerkowski, K., 2002. Thermal equilibrium states of Europa’s ice shell: implications for internal ocean thickness and surface heat flow. Icarus, 156, pp.143-151.

Lai, J., 2015. Astrobiology: development of a science. In: C. Eyles, S. Symons, eds., 2015. History of the Earth Volume V. Hamilton: McMaster University. pp.38-41.

Lorenz, R. D., 2016. Europa ocean sampling by plume flythrough: astrobiological expectations. Icarus, 267, pp.217-219.

Lunine, J. I., 2017. Ocean worlds exploration. Acta Astronautica, 131, pp.123-130.

Marion, G. M., Fritsen, C. H., Eicken, H., and Payne, M. C., 2004. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology, 3(4), pp.785-811.

Melosh, H. J., Ekholm, A. G., Showman, A. P., and Lorenz, R. D., 2004. The temperature of Europa’s subsurface water ocean. Icarus, 168(2), pp.498-502

NASA, 2016. Europa overview. [online] Available at: <https://www.nasa.gov/europa/overview/index.html> [Accessed 25 February 2017].

NASA, JPL-Caltech, and SETI Institute, 2014. PIA19048: Europa's stunning surface. [image online] Available at: <http://photojournal.jpl.nasa.gov/jpeg/PIA19048.jpg> [Accessed 21 February 2017].

Quick, L. C. and Marsh, B. D., 2015. Constraining the thickness of Europa’s water–ice shell: insights from tidal dissipation and conductive cooling. Icarus, 253, pp.16-24.

Raymond, C. A., Jia, X., Joy, S. P. Khurana, K. K., Murphy, N., Russell, C. T., Strangeway, R. J., and Weiss, B. P., 2015. Interior Characterization of Europa using Magnetometry (ICEMAG): probing the Europan ocean and exosphere. American Geophysical Union, Fall Meeting 2015. Abstract only. Available through: SAO/NASA ADS Astronomy Abstract Service <http://adsabs.harvard.edu/abs/2015AGUFM.P13E..08R> [Accessed 26 February 2017].

Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., and Nimmo, F., 2014. Transient water vapor at Europa’s south pole. Science, 343(6167), pp.171-174.

Stillman, D. E., Michaels, T. I., Grimm, R. E., 2017. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus, 285, pp.195-210.

Thomas, E. C., Hodyss, R., Vu, T. H., Johnson, P. V., and Choukroun, M., 2017. Composition and evolution of frozen chloride brines under the surface conditions of Europa. ACS Earth and Space Chemistry, [e-journal] http://dx.doi.org/ 10.1021/acsearthspacechem.6b00003.

Van Hoolst, T., Rambaux, N., Karatekin, Ö, Dehant, V. and Rivoldini, A., 2008. The librations, shape, and icy shell of Europa. Icarus, 195(1), pp.386-399.

Downloads

Published

2017-08-04