Thickness Optimization of Ultra-thin Nickel Films

Authors

  • Peter Wojdylo McMaster University

Abstract

Ultrathin nickel films with thicknesses varying from 2-7nm in 1nm increments were produced using electron-beam physical vapor deposition. Optical transmittance spectra were obtained using ellipsometry and Fourier transform infrared spectroscopy, and resistivities were obtained by measuring sheet resistance using a four-point probe setup. The Haacke's figure of merit was used to determine the optimal thickness of 3nm for those films produced, and a relative slope method was used along with fits to obtained data to determine a more precise optimum of 3.3nm. Differences in transmittance and resistivity from other sources were attributed to the lesser degree of compacting in the deposition method used when compared to dc sputtering. The results show that nickel thin films can be optimized by thickness to produce transparent conductive electrodes for optoelectronic applications.

References

Klaus Ellmer. Past achievements and future challenges in

the development of optically transparent electrodes. Na-

ture Photonics, 6(12):809, December 2012. ISSN 1749-4893.

doi:10.1038/nphoton.2012.282. URL https://www.nature.com/

articles/nphoton.2012.282.

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and

V. Pruneri. Widely transparent electrodes based on ultra-

thin metals. Optics Letters, 34(3):325{327, February 2009.

ISSN 1539-4794. doi:10.1364/OL.34.000325. URL https://www.

osapublishing.org/abstract.cfm?uri=ol-34-3-325.

Luis Martnez, Dhriti Sundar Ghosh, Stefano Giurgola, Paolo

Vergani, and Valerio Pruneri. Stable transparent Ni elec-

trodes. Optical Materials, 31(8):1115{1117, June 2009. ISSN

-3467. doi:10.1016/j.optmat.2008.11.019. URL http://www.

sciencedirect.com/science/article/pii/S092534670800311X.

Frank L. Pedrotti, Leno Matthew Pedrotti, and Leno S. Pedrotti.

Introduction to optics. Pearson/Prentice Hall, Upper Saddle

River, N.J, 3rd ed edition, 2007. ISBN 978-0-13-149933-1.

K. Fuchs. The conductivity of thin metallic lms according to

the electron theory of metals. Mathematical Proceedings of the

Cambridge Philosophical Society, 34(1):100{108, January 1938.

ISSN 1469-8064, 0305-0041. doi:10.1017/S0305004100019952.

URL https://www.cambridge.org/core/journals/

mathematical-proceedings-of-the-cambridge-philosophical-society/

article/conductivity-of-thin-metallic-films-according-to-the-electron-theory-of-metals/

B67FD21662E4DC38745343C4CF8455FD.

E.h. Sondheimer. The mean free path of electrons

in metals. Advances in Physics, 1(1):1{42, January

ISSN 0001-8732. doi:10.1080/00018735200101151.

URL http://www-tandfonline-com.libaccess.lib.mcmaster.

ca/doi/abs/10.1080/00018735200101151.

G. Haacke. New gure of merit for transparent conductors. Jour-

nal of Applied Physics, 47(9):4086{4089, September 1976. ISSN

-8979. doi:10.1063/1.323240. URL http://aip.scitation.

org.libaccess.lib.mcmaster.ca/doi/abs/10.1063/1.323240.

Simon G Kaplan and Leonard M Hanssen. Silicon as a stan-

dard material for infrared re

ectance and transmittance from 2

to 5 m. Infrared Physics & Technology, 43(6):389{396, Decem-

ber 2002. ISSN 1350-4495. doi:10.1016/S1350-4495(02)00161-

URL http://www.sciencedirect.com/science/article/pii/

S1350449502001615.

Dhriti Sundar Ghosh. Basics of Ultrathin Metal Films and Their

Use as Transparent Electrodes. In Ultrathin Metal Transpar-

ent Electrodes for the Optoelectronics Industry, Springer Theses,

pages 11{32. Springer, Heidelberg, 2013. ISBN 978-3-319-00347-4

-3-319-00348-1. URL https://link.springer.com/chapter/

1007/978-3-319-00348-1_2. DOI: 10.1007/978-3-319-00348-

2.

P. B. Johnson and R. W. Christy. Optical constants of transition

metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Physical Review B, 9

(12):5056{5070, June 1974. doi:10.1103/PhysRevB.9.5056. URL

https://link.aps.org/doi/10.1103/PhysRevB.9.5056.

M. L. Grilli, I. Di Sarcina, S. Bossi, A. Rinaldi, L. Pil-

loni, and A. Piegari. Ultrathin and stable Nickel lms as

transparent conductive electrodes. Thin Solid Films, 594

(Part B):261{265, November 2015. ISSN 0040-6090. doi:

1016/j.tsf.2015.05.015. URL http://www.sciencedirect.

com/science/article/pii/S0040609015005490.

Bradley J. Pond, Tu Du, J. Sobczak, and Charles K.

Carniglia. Comparison of the optical properties of oxide

lms deposited by reactive-dc-magnetron sputtering with

those of ion-beam-sputtered and electron-beam-evaporated

lms. volume 2114, pages 345{355. International Society

for Optics and Photonics, July 1994. doi:10.1117/12.180926.

URL https://www-spiedigitallibrary-org.libaccess.lib.

mcmaster.ca/conference-proceedings-of-spie/2114/0000/

Comparison-of-the-optical-properties-of-oxide-films-deposited-by/

1117/12.180926.short.

Published

2018-01-16